Medical Response to Radiation: Navigating Emergencies, Enhancing Survival

Lt Col Justin Peacock, MD, PhD Department Head of Military Medical Operations, AFRRI Assistant Professor of Radiology, USU

Disclosure/Disclaimer

The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

The author has no conflicts of interest to report.

The author will discuss off-label uses of medications and medications currently in various stages of development.

Dr. Winfield Evans, PhD

- Born in January 23, 1923 in Hannah, OK
- Served in the US Army in Italy
- Texas Tech BS Electrical Engineering (1948)
- MIT MS Physics (1950)
- U of Oklahoma PhD Physics (1966)
- Medical physicist at St. Anthony Hospital in Oklahoma City, OK
- 12th President of the SNMMI Southwestern Chapter
- Passed away September 24, 1989 in Hannah, OK

Objectives

- To identify the key signs and symptoms of acute radiation syndrome aiding in prompt patient triage and initial management.
- To describe the protocols for medical response to radiation exposure, including immediate and supportive care measures.
- To evaluate the effectiveness of current radiation prophylaxis and postexposure treatments in mitigating the health impacts of radiation.

Introduction

How comfortable do you feel responding to a potential radiation emergency?

Chernobyl, Ukraine (1986)

- Chernobyl nuclear plant
 explosion
- 50-185 million Ci released
- Many with long-term effects

https://www.theatla ntic.com/photo/201 9/06/chernobyldisaster-photos-1986/590878/

Goiania, Brazil (1987)

- 137Cs source
- 1375 Ci
- 112K monitored

https://wwwpub.iaea.org/MTCD/P ublications/PDF/Pub8 15_web.pdf

Fukushima, Japan (2011)

- Tsumani-induced power loss
- Hydrogen gas explosions due to \bullet lack of cooling
- Deaths from disaster, evacuation

and one from radiation

https://en.wiki pedia.org/wiki/ Fukushima_nu clear_accident

Nuclear Medicine Professionals

- Radiation Knowledge
 - Biology
 - Physics
 - Risks
 - Safety
- Radiation Expertise
 - Detection
 - Dosimetry

1st Attendance Code

Acute Radiation Syndrome (ARS)

Acute Radiation Syndrome (ARS)

- Large radiation dose (> 0.7 Gy)
- External dose
- Penetrating radiation
- Whole body or >70% of the body
- Short dose time frame

ARS Phases

Time Course

Prodromal Phase

Nausea and Vomiting

Headache Diarrhea Fever

Loss of Consciousness

Latent Phase

Reduced or no symptoms

Manifest Illness

Dose-based Symptoms

- Hematopoietic
- Gastrointestinal
- Cerebrovascular

Recovery/Death

Long term effects

- Stochastic
- Deterministic

Death

ARS Subsyndromes

<u>Subsyndrome</u>	<u>Dose</u>	Characteristic Findings
Hematopoietic	0.7 - 5 Gy	Bone Marrow Failure, Pancytopenia
Gastrointestinal	6 - 9 Gy	Severe GI symptoms, GI Bleeding, Electrolyte Abnormalities, Sepsis
Neurovascular	> 10 Gy	Hemorrhagic stroke, Loss of Consciousness, Decreased BP

Hematopoietic Subsyndrome

Normal Marrow

Irradiated Marrow

Gastrointestinal Subsyndrome

Normal GI Mucosa Irradiated GI Mucosa

ARS Triage

Triage Items

- Life-threatening injuries (ABCs)
- Combined injuries
- Internal contamination
- Time to emesis
- External contamination survey
- Shrapnel
- Lymphocyte depletion statistics

Image created by DALL-E

Combined Injury

Kiang JG, Jiao W, Cary LH, et al. Radiat Res. 2010 Mar;173(3):319-32.

Internal Contamination

https://www.cdc.gov/nceh/m ultimedia/infographics/radiati on_contamination_vs_expos ure.html

Time to Emesis

Demidenko E, Williams BB, Swartz HM. Radiat Res. 2009 Mar;171(3):310-9.

Shrapnel

- Most significant radiation risk for providers
- Remove shrapnel with metal tongs/forceps
- Dispose in containers per Radiation
 Safety Officer

https://remm.hhs.gov/contamimage_3.htm

Lymphocyte Depletion

AFRRI research

https://remm.hhs.gov/andrew slymphocytes.htm

Radiation Emergency Triage

Immediate	<u>Minimal</u>		
 Life-threatening injuries Combined injuries Internal Contamination 	 Radiation exposure without injury Worried well 		
<u>Delayed</u>	<u>Expectant</u>		

Triage by Resource Availability

https://remm.hhs.gov/

Initial Radiation Injury Management

Resources

- Armed Forces Radiobiology Research Insititute (AFRRI)
 - Medical Radiobiology Advisory Team (MRAT)
 - o https://afrri.usuhs.edu/
- Radiation Emergency Assistance Center/Training Site (REAC/TS)
 - o <u>https://orise.orau.gov/reacts/index.html</u>
- Radiation Emergency Medical Management (REMM)
 - o <u>https://remm.hhs.gov/</u>
- Radiation Injury Treatment Network (RITN)
 - <u>https://ritn.net/</u>
- Centers for Disease Control and Prevention (CDC)
 - o <u>https://www.cdc.gov/nceh/radiation/default.htm</u>

Contaminated or Exposed, how do we know?

Radiologic Accidents

Radiologic Terrorism/War

Provider Protection

Class C (left)

- Consider for initial decontamination
 - Protects from airborne radioactive material
 - Protects from skin contamination
- Air-purifying respirator
- Face shield

Class D (right)

- Standard isolation PPE
- Utilize after initial decontamination
- Exposure-only concerns

https://orise.orau .gov/resources/r eacts/document s/radiationpatienttreatmentalgorithm.pdf Removing a patient's clothing and washing their skin and hair removes >90% of contamination.

External Contamination Survey

https://remm.hhs.gov/howtosurvey.htm

Sample Collection

Prioritized Decontamination

https://www.cdc.gov/nceh/radiation/emergencies/justintime.htm

Biodosimetry

- Low resources, rapid assessment
 - Time to emesis (< 4 hours, likely ARS)
- High resources, medium-term assessment
 - NM imaging and dosimetry techniques for internal contamination
- Low resources, 24-48 hour assessment
 - CBC with differential (48 hour lymphocyte depletion by 50%, > 4Gy dose)
- High resources, medium to long-term assessment
 - Dicentric Chromosome Assay (DCA)
 - FISH analysis of chromosome abnormalities
 - Electron Paramagnetic Resonance (EPR)

DCA and FISH

https://remm.hhs.gov/aboutdicentrics.htm https://orise.orau.gov/reacts/cytogenetic-biodosimetry-laboratory.html Medical Radiation Injury Management

Supportive Measures

- Anti-nausea
- IV Fluids and Electrolytes
- Blood Products
 - \circ Irradiated
 - Leukocyte-reduced
- Antimicrobial prophylaxis
 - Neutropenic patients
- Psychological support

Transfusion Guidance

Criteria for Substitution Therapy for Hematopoietic Type Acute Radiation Syndrome

Patient's individual condition	Threshold value	Substitution therapy	
Close monitoring possible, no other complication, no bleeding	Platelets: 10,000/µL	Irradiated and leukoreduced platelet concentrates	
Close monitoring not possible, increased risk of manifest bleeding	Platelets: 20,000/µL	Irradiated and leukoreduced platelet concentrates	
Additional trauma, survery, mass transfusion, cerebral edema	Platelets: 50,000/µL	Irradiated and leukoreduced platelet concentrates	
Anemia	Hemoglobin: 10 g/dL	Irradiated and leukoreduced packed red cells	

Internal Contamination

- Radioiodines (1311)
 - Potassium iodide (KI)
- Radiostrontium (90Sr)
 - Calcium, strontium salts
- Tritium (3H)
 - Fluids and diuretics
- Cesium (137Cs)
 - Prussian Blue ion exchange
- Plutonium (239Pu), Americium (241Am), Curium (242Cm)
 - Chelation (DTPA/EDTA)

Cytokine Countermeasures

- FDA-approved cytokines
 - Filgramostim (Neupogen[®])
 - PEGylated filgramostim (Neulasta[®])
 - Sargramostim (Leukine[®])
- Predominantly promote neutrophils
 - Leukine promotes many cell lineages

MacVittie et al. 2015 Health Physics, 109 (5), 427-439.

Platelet Countermeasures

- FDA-approved thrombopoietin (TPO) receptor activator
 - Romiplostim (Nplate[®])
 - Promotes megakaryocytes and platelets
- Additional platelet promoters are in development, including recombinant TPO, TPO activators, and IL-11.

Drug	Irradiation dose	Drug dose (µg/kg)	Injection time post- irradiation (days)	Group size (n=)	Percent mortality	Platelet Nadir (×10 ⁹ /L)	Duration of thrombocytopenia (days)
Vehicle	~LD70/60	Vehicle	1	40*	67.5	12.5	3.8
Nplate	6.8 Gy	5	1	40*	27.5	36.3	1.3
Nplate + PEGfilgrastim	×	5 and 0.3	1 (both drugs), 8 (only PEGfilgrastim)	40*	12.5	31.5	1.1

MacVittie et al. 2015 Health Physics, 109 (5), 427-439.

Stem Cell Transplant

- Allogeneic and syngeneic stem cell transplants have been attempted in several cases of high radiation exposure.
- In a review of 29 historical bone marrow transplant cases
 - Three patients survived longer than one year
 - Many died from GI subsyndrome conditions, traumatic injuries, or graft vs host disease
 - Engraftment may occur around the same time as the patient's own bone marrow reconstitutes

Stromal Cell Therapy

Kumar VP, et al. Genes (Basel). 2022 Sep 28;13(10):1756.

IL-12 Countermeasure

- rhIL-12 (HemaMax[®])
- Pro-inflammatory cytokine
 - Improves hematopoiesis
 - Improves GI function
 - Improves survival

Gluzman-Poltorak Z et al. American journal of hematology. 2014 Sep;89(9):868-73.

BIO300 Countermeasure

- Genistein (BIO300[®])
 - Phytoestrogen that binds ERs
 - Protects progenitor cells from radiation damage
 - Increases cell cycle checkpoints and DNA repair

enzymes

- Captopril combination increases radioprotection
- Antioxidant properties
- Mitigates radiation-induced pneumonitis/fibrosis

Singh VK, Seed TM. Expert Opinion on Investigational Drugs. 2020 May 3;29(5):429-41.

OrbeShield $\widehat{\mathbb{R}}$ for GI-ARS

Measey T et al. Poster presented at the Radiation Research Society 62 Annual International Meeting. 2016

Prophylactic Medications

- Several prophylactic radioprotectants are in research:
 - Piperazine derivatives
 - Chlorobenzylsulfones (example Ex-RAD)
 - Aminothiols (example amifostine)
 - Enalapril

Singh VK, Seed TM. International Journal of Radiation Biology. 2021 Nov 2;97(11):1526-47.

https://www.draeger.com/en-us_us/Safety/Federal-Government-Solutions/Military/NBC-CBRN-Protection

Combination Therapies

- ARS is complicated, impacting many systems.
- Combination therapies likely address the multi-system effects.
- rhG-CSF (Neutrogin[®]) and human TPOR agonist RP (Romiplat[®]) demonstrate improved survival in lethal dose mice models.

Hirouchi T, et al. 2015. Curr Pharm Biotechnol. 17(2):190–199.

2nd Attendance Code

Chronic Radiation Care

- Patients surviving ARS or radiation injury need ongoing patient care for stochastic and deterministic effects.
- Stochastic (more radiation, greater statistical likelihood)
 - \circ Cancer
- Deterministic (more radiation, greater severity)
 - Cataract (most common)
 - Infertility
 - Atherosclerotic disease
 - Pulmonary pneumonitis/fibrosis

- To identify the key signs and symptoms of acute radiation syndrome aiding in prompt patient triage and initial management.
- To describe the protocols for medical response to radiation exposure, including immediate and supportive care measures.
- To evaluate the effectiveness of current radiation prophylaxis and postexposure treatments in mitigating the health impacts of radiation.

Questions/Short Survey

- Please feel free to contact me at justin.peacock@usuhs.edu
- Please fill out this short survey about the presentation:

