#### UT Southwestern Medical Center

Radiology

## New and Upcoming Radiopharmaceuticals Marianna Dakanali, PhD Assistant Professor of Radiology Director of Cyclotron Regulatory Affairs

SWC – SNMMI Annual Meeting March 25, 2023

**FDA Approved PET Radiopharmaceuticals** <sup>18</sup>F Sodium Fluoride **1972 (2011)** <sup>82</sup>Rb Rubidium Chloride (Cardiogen-82) <sup>18</sup>F Fludeoxyglucose (FDG) <sup>13</sup>N Ammonia <sup>18</sup>F Florbetapir (Amyvid) <sup>11</sup>C Choline <sup>18</sup>F Flutemetamol (Vizamyl) <sup>18</sup>F Florbetaben (Nuraceq) 18F Fluciclovine (Axumin) 2016

<sup>68</sup>Ga DOTATATE (Netspot) <sup>68</sup>Ga DOTATOC <sup>18</sup>F Fluorodopa (FDOPA) <sup>18</sup>F Flortaucipir (Tauvid) <sup>18</sup>F Fluoroestradiol (Cerianna) <sup>64</sup>Cu DOTATATE (DETECTNET) <sup>68</sup>Ga Gozetotide (PSMA-11) <sup>18</sup>F Piflufolastat (Pylarify) <sup>68</sup>Ga Gozetotide kit (Illuccix) <sup>68</sup>Ga Gozetotide kit (Locametz)

Prostate-Specific Membrane Antigen (PSMA) Targeting Agents

> UT Southwestern Medical Center

#### **Prostate-Specific Membrane Antigen (PSMA)**

- PSMA is a type II transmembrane glycoprotein that consists of 750 amino acids, with MW > 100 kD after glycosylation
- PSMA has a 3-part structure: internal portion (19 amino acids), transmembrane portion (24 amino acids) and external portion (707 amino acids)
- It is expressed in prostate glands, duodenum, kidney, salivary glands, neuroendocrine system, proximal renal tubules
- Elevated PSMA is associated with poor outcome such as local spread, relapses and metastasis

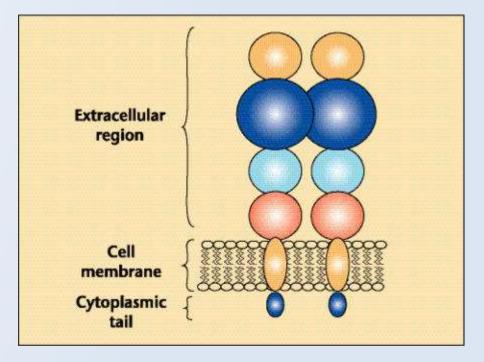
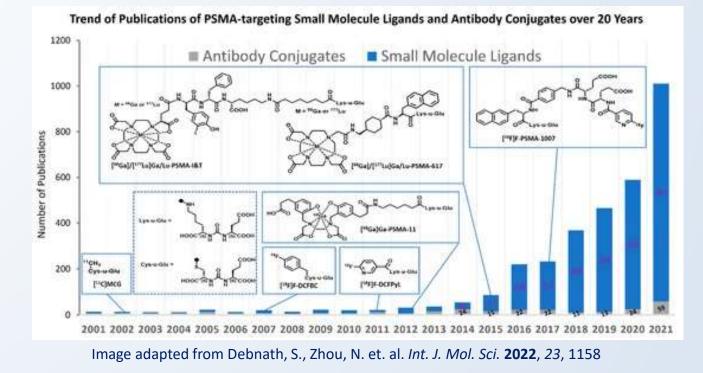



Image adapted from: Chang S. S., Rev. Urol. 2004; 6(Suppl 10), S13-S18

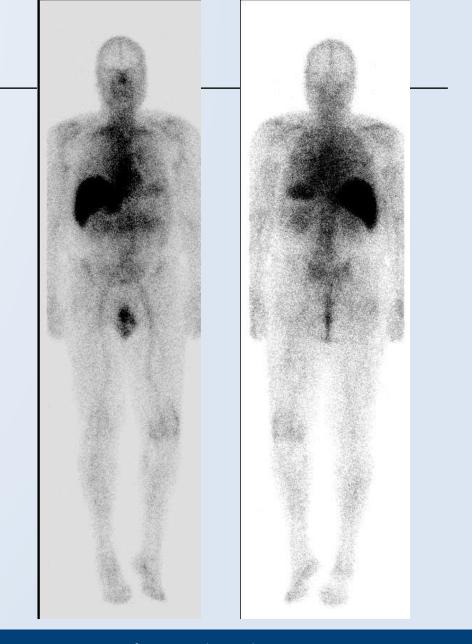
#### **PSMA as Target for Prostate Cancer Imaging and Therapy**


- PSMA expression can be elevated 1000-fold higher than that in normal tissues
- PSMA expressed at nearly all stages of disease in a high proportion of prostate cancer tumors
- Increase PSMA expression is correlated with increased tumor grade, staging, aneuploidy and/or biochemical recurrence
- The transmembrane structure of PSMA enables internalization of bound agents
- PSMA belongs to the enzyme class of carboxypeptidases and the preferred substrate of PSMA is a
  peptide with a C-terminal glutamate

Two classes of compounds have been extensively evaluated for targeting PSMA:

- anti-PSMA antibodies or protein fragments
- small molecule inhibitors of the enzymatic activity of PSMA

Silver, D.A.; et al. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* **1997**, *3*, 81 Bostwick, D.G.; et al. *Cancer* **1998**, *82*, 2256 Wright, G.L., Jr.; et al. *Urol. Oncol.* **1995**, *1*, 18 Rajasekaran, S.A.; et al. *Mol. Biol. Cell* **2003**, *14*, 4835


#### Monoclonal Antibodies (mAbs) vs Small Molecules (SMs) for Targeting PSMA



- mAbs show prolonged blood retention that results low tumor-to-background ratio
- SMs show rapid extravasation, quick diffusion in extravascular space and efficient blood clearance
- SMs inhibitors of PSMA have dominated the development of PSMA imaging and therapy agents
- Preferred substrates are peptides with a C-terminal glutamate based on the urea structure

#### Monoclonal Antibodies (mAbs) – ProstaScint

- <sup>111</sup>In-capromab pendetide (ProstaScint) was the first FDA approved radiopharmaceutical for prostate cancer imaging (approved 1999)
- mAb (7E11-C5) against the cytoplasmic domain of PSMA coupled with a chelator for <sup>111</sup>In labeling
- Low sensitivity and specificity
- The monoclonal antibody J591 is directed against an extracellular epitope of PSMA
- Currently in pilot studies for evaluation of its diagnostic (<sup>111</sup>In, <sup>99m</sup>Tc, <sup>64</sup>Cu, <sup>89</sup>Zr) and therapeutic (<sup>177</sup>Lu, <sup>225</sup>Ac) potential



Manyak, M.J.; et al. *Urology* **1999**, *54*, 1058 Evans, M.J.; et al. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 9578 Debnath, S., Zhou, N. et. al. *Int. J. Mol. Sci.* **2022**, *23*, 1158 Image courtesy of Dana Mathews PhD, MD

#### **Small Molecule Ligands for PSMA**

- Small molecule inhibitors were developed against the enzymatic activity of PSMA for neurological disorders
- Phosphorus-based ligands bind to the binuclear zinc ions in the active PSMA domain
- Thiol-based ligands form disulfide bonds that show inadequate metabolic stability
- Urea-based ligands show high binding affinity and stability
- A linker between the PSMA binding motif and the chelator positions the chelating part outside the active site
- Negatively charged linkers reduce off-target retention
- Hydrophobic aromatic structures can reduce kidney uptake

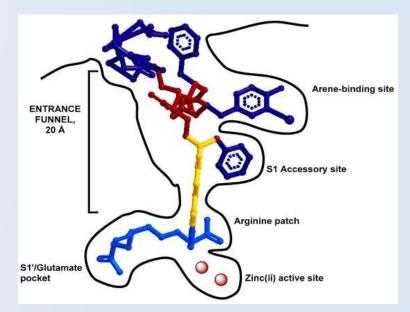
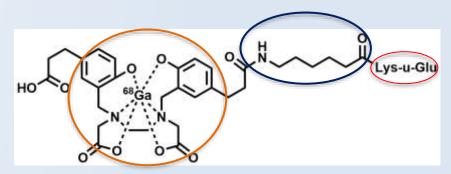
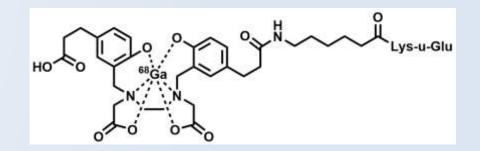



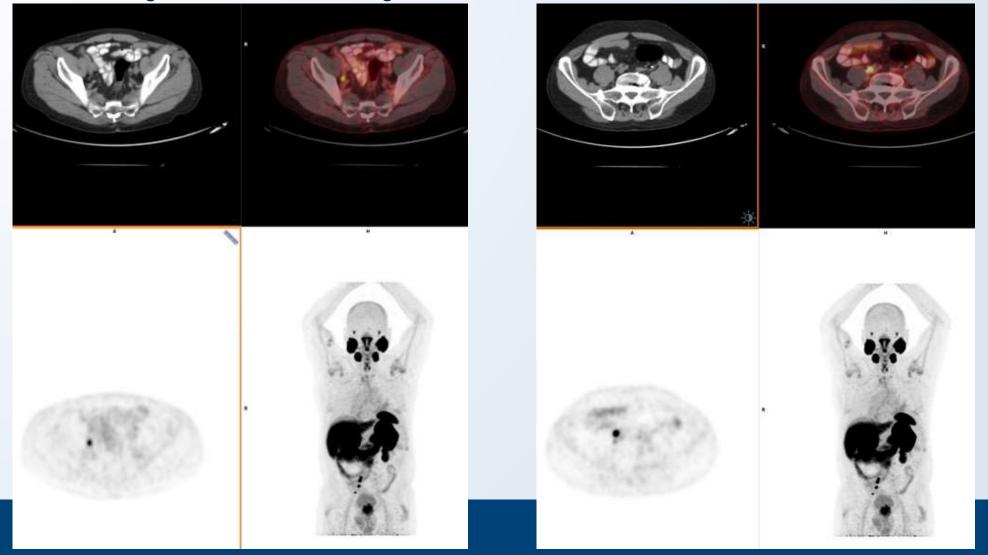

Image adapted from Debnath, S., Zhou, N. et al. *Int. J. Mol. Sci.* **2022**, *23*, 1158

- First-in-human <sup>68</sup>Ga PSMA-11 study was reported in 2012 by the German Cancer Research Institute and the University Hospital Heidelberg
- Structure consist of a) a Lys-u-Glu targeting moiety; b) an Ahx spacer;
   c) an HBED-CC chelator for <sup>68</sup>Ga labeling
- <sup>68</sup>Ga PSMA-11 shows high specific uptake to PSMA expressing tumors and relatively low liver uptake at 1 h p.i.
- UC Los Angeles and UC San Francisco jointly applied for FDA approval (NDA 212642 and NDA 212643)
- Clinical data from 2 phase III studies (PSMA-PreRP & PSMA-BCR)
- Approved (December 2020) for imaging of patients
  - with suspected metastasis who are candidates for initial definitive therapy
  - With suspected recurrence based on elevated PSA level




- ➢ Dose: 111 MBq to 259 MBq (3 − 7 mCi)
- Uptake time: 50 100 min

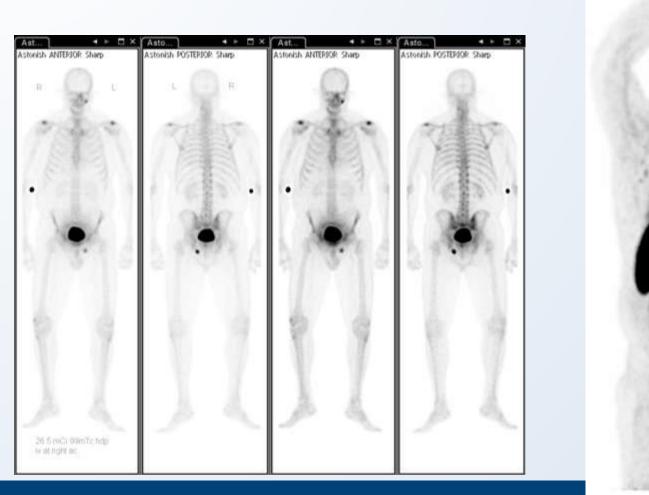
- Due to the short half-life approval/use of <sup>68</sup>Ga Gozetotide is site specific
- Clinical production requires submission and approval of an ANDA
- FDA allowed production under an expanded access (ea) IND

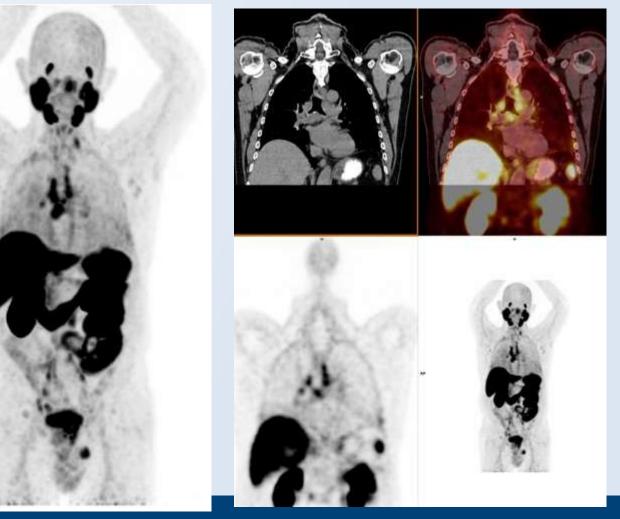

#### Need for commercially available <sup>68</sup>Ga Gozetotide

- Telix Pharmaceuticals Inc. obtained FDA approval for their kit Illuccix on December 17, 2021
  - Allows labeling with either generator or cyclotron produced Ga68
- AAA USA Inc (Novartis) obtained FDA approval for their kit Locametz on March 23, 2022
  - for selection of patients with metastatic prostate cancer, for whom lutetium Lu177 vipivotide tetraxetan PSMA-directed therapy is indicated



- ealND approval at UTSW, March 2021
- 1<sup>st</sup> patient scanned, August 2021
- ➢ 550 scans completed until March 16, 2023
- Commercial sources also used since
   September 2022


Case 1: initial diagnosis, PSA > 20 – negative nodes on CT




UTSouthwestern Medical Center Radiology

Images courtesy of Orhan K. Öz MD, PhD

Case 2: initial diagnosis, PSA 5.78, prior CT C/A/P called negative, bone scan showed 1 – 2 lesions

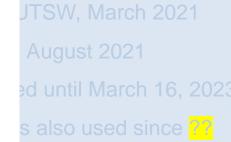


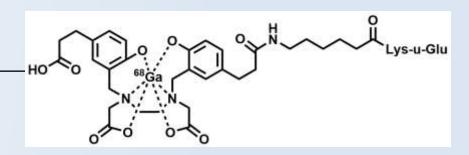


Images courtesy of Orhan K. Öz MD, PhD

- Due to the short half-life approval/use of <sup>68</sup>Ga Gozetotide is site specific
- **Clinical production**
- FDA allowed pro

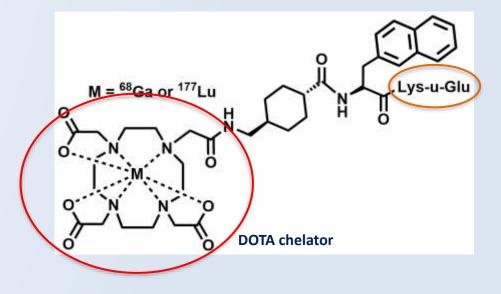
### Need for commercia


- Telix Pharmaceu on December 17
  - Allows labeline


## FDA approves Pluvicto for metastatic castration-resistant prostate cancer

🔒 Print Y Tweet 🖂 Email f Share in Linkedin

On March 23, 2022, the Food and Drug Administration approved Pluvicto (lutetium Lu 177 vipivotide tetraxetan, Advanced Accelerator Applications USA, Inc., a Novartis AAA USA Inc (Novarus) optamed FDA approval for men kit


Locametz on Mar Patients with previously treated mCRPC should be selected for treatment with Pluvicto using Locametz or another approved PSMA-11 imaging agent based on PSMA expression for selection of in tumors. PSMA-positive mCRPC was defined as having at least one tumor lesion with vipivotide tetraxetan PSIVIA-directed therapy is indicated lutetium Lu 177





#### 68Ga/177Lu PSMA-617

- HBED-CC does not form stale complexes with therapeutic radionuclides
- PSMA-617 consists of:
  - a DOTA chelator
  - a naphthalynic spacer
  - the Lys-u-Glu PSMA targeting structure
- <sup>177</sup>Lu PSMA-617 when compared to <sup>68</sup>Ga PSMA-11 showed:
  - better binding affinity
  - more internalization
  - higher tumor-to-background contrast
  - faster kidney clearance
- Data from multiple clinical trials showed increased survival
- Vision trial showed:
  - prolonged progression free survival (8.7 vs 3.4 months)
  - increased overall survival (15.3 vs 11.3 months)

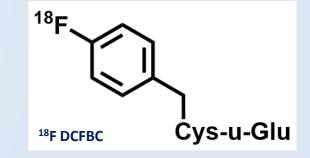


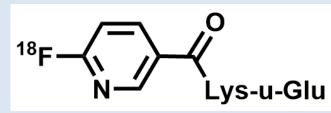
**UTSouthwestern** 

Medical Center Radiology

#### <sup>177</sup>Lu PSMA-617

- AAA USA Inc (Novartis) obtained FDA approval for Pluvicto (lutetium Lu 177 vipivotide tetraxetan) injection on March 23, 2022
- Pluvicto is indicated for treatment of patients with PSMA positive mCRPC who have been treated with androgen receptor (AR) pathway inhibition and taxane-based chemotherapy
- Dosage: 7.4 GBq (200 mCi) every 6 weeks for up to 6 doses



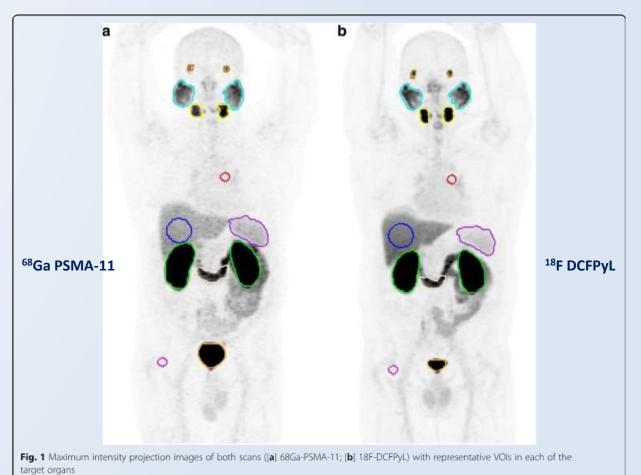


Lutetium Lu 177 Vipivotide Tetraxetan (Pluvicto) Injection Status: Currently in Shortage »Date first posted: 03/07/2023 »Therapeutic Categories: Oncology

| Presentation                                                                                                                                                                                                                             | Availability and Estimated Shortage<br>Duration                                               | Related Information                                                                                                                                                                                         | Shortage<br>Reason (per<br>FDASIA) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| PLUVICTO® (lutetium Lu 177 vipivotide tetraxetan) injection, for intravenous use 27 mCi/mL; Colorless Type I glass 30 mL single-dose vial containing 7.4 GBq (200 mCi) ± 10% of lutetium Lu 177 vipivotide tetraxetan (NDC 69488-010-61) | Availability: Limited; Estimated<br>Duration of Supply Shortage:<br>Approximately four months | There are challenges in meeting demand and no<br>therapeutic equivalents are available. For more<br>information, please see the attached:<br>Novartis Update for Patients on Supply of<br>PLUVICTO and FAQs | Other                              |

### <sup>18</sup>F Labeled PSMA-Targeting Agents – <sup>18</sup>F DCFPyl (<sup>18</sup>F Piflufolastat)

- The Pomper group in 2002 reported a urea based <sup>11</sup>C tracer with cysteine and glutamine residues with desired imaging profile
- In 2008 the 1<sup>st</sup> generation <sup>18</sup>F DCFBC tracer was developed
- In 2011 the 2<sup>nd</sup> generation <sup>18</sup>F DCFPyL was developed
- <sup>18</sup>F DCFPyL showed improved tumor uptake, reduced kidney uptake, faster clearance from non-target tumors
- <sup>18</sup>F Piflufolastat (Pylarify) was <u>FDA approved on May 26, 2021</u>
- The CONDOR trial:
  - correctly localized disease in 85% of men with biochemically recurrent prostate cancer
  - Of those 73% underwent a change in management





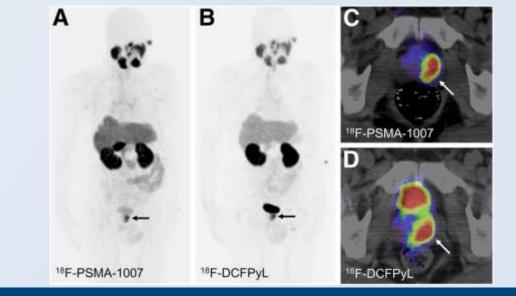

<sup>18</sup>F DCFPyL

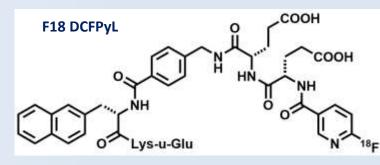
Pomper, M.G. et al. *Mol. Imaging* **2002**, *1*, 15353500200202109 Mease, R.C.; et al. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* **2008**, *14*, 3036 Chen, Y.; et al. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* **2011**, *17*, 7645 Morris, M. J.; *Clin. Cancer Res.* **2021**, *27*, 3674

### <sup>18</sup>F DCFPyl vs <sup>68</sup>Ga PSMA-11

- Similar biodistribution
- In a study, when compared to PSMA-11 in patients with BCR, it showed higher sensitivity for low PSA values  $(0.5 3.5 \ \mu g/L)$
- Insufficient evidence to favor one PSMA tracer over the other




Dietlein, F. et al. *J. Nuc. Med.* **2017**, *58*, 947 Ferreira, G.; et al. *Cancer Imaging* **2019**, *19*, 23 Alberts, I. L.; et al. *Eur. J. Nucl. Med. Mol. Imaging* **2021**, *48*, 2978


## Giesel, F. L.; et al. *J. Nuc. Med.* **2018**, *59*, 1076 Wang, Y.; et al. *Nature Review* **2022**, *19*, 475

# <sup>18</sup>F PSMA-1007

- <sup>18</sup>F PSMA-1007 includes a modified spacer from PSMA-617 that leads to increased hydrophilicity
- Showed high tumor cell internalization in vitro and high tumor uptake in vivo
- Showed comparable detection sensitivity and specificity to <sup>18</sup>F DCFPyl
- Decreased signal from the ureters and bladder within the imaging time interval
- Improved identification of local recurrence or pelvic lymph node metastasis
- Higher liver uptake
- Currently in phase III clinical trials


Image adapted from Giesel, F. L.; et al. J. Nuc. Med. 2018, 59, 1076

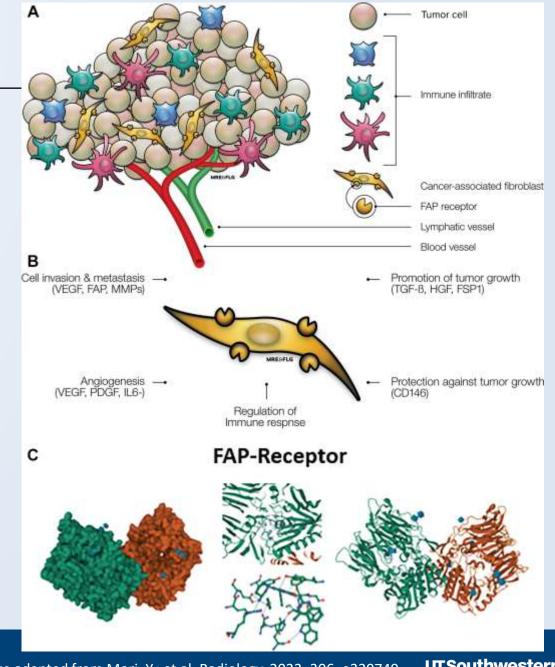




#### **Future Perspectives**

- Identical pair of agents for diagnosis and therapy
- Modifications on the linker without compromising the PSMA specific binding affinity
  - Minimize side effects
  - Enhance tumor uptake
- Development of concurrent theranostic strategy




Kumar, A.; et al. *Bioconjug. Chem.* **2016**, *27*, 1681 Gonzalez, P.; et al. *Pharmaceutics* **2023**, *15*, 481

# Fibroblast Activation Protein Inhibitor (FAPI) Use in Imaging

UT Southwestern Medical Center

#### **Activated Fibroblasts in Tumor Microenvironment**

- Tumor microenvironment has gained considerable attention for the development of new diagnostic and therapeutic strategies
- Tumor stroma develops around malignant cells (1 2 mm) and plays an important role in the development of tumors
- Cancer associated fibroblasts constitute the main component of the tumor stroma
- Activated via stimuli such as hypoxia and oxidative stress to release growth factors
- Transformed to cells expressing surface markers
- Fibroblast Activation Protein (FAP) most specifically upregulated surface protein



Mori, Y.; et al. *Radiology.* **2023**, *306*, e220749 Loktev. A; et al. *J. Nuc. Med.* **2018**, *59*, 1423 Fitzgerald, A. A.; et al. *Cancer Metastasis Rev.* **2020**, *39*, 783

Image adapted from Mori, Y.; et al. Radiology. 2023, 306, e220749

UT Southwestern Medical Center

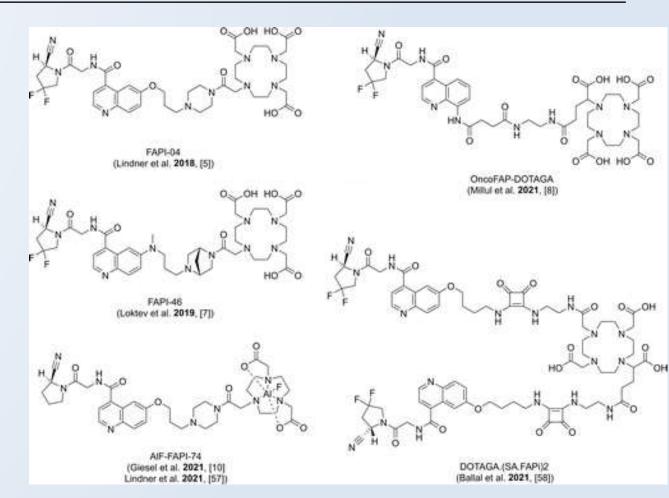
#### **Fibroblast Activation Protein**

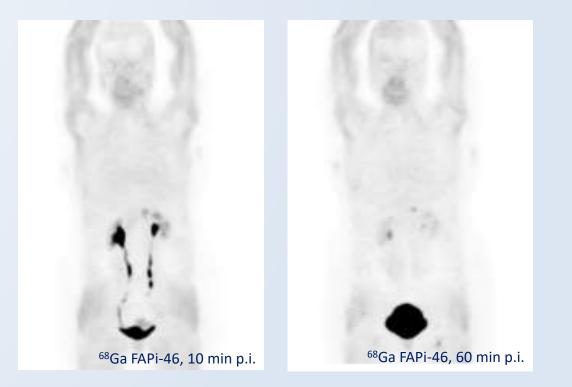
- Fibroblast Activation Protein (FAP) is a transmembrane type II glycoprotein belonging to the dipeptidyl peptidase 4 (DPP4) family
- FAP expression is associated with poor prognosis
- FAP consists of 760 amino acids, with a large extracellular domain (734 amino acids)
- Catalytic domain located extracellularly
- FAP is expressed in more than 90% of human epithelial cancers
- It is absent from normal tissues
- These properties suggest:
  - Low background activity with high image contrast
  - Low frequency of side effects
  - Application in many different tumor types



#### **Fibroblast Activation Protein Inhibitors (FAPI)**

- Several quinoline based FAP inhibitors have been reported to the literature
- First <sup>68</sup>Ga labeled inhibitors were synthesized by Lindner et al. with specific binding to FAP
- <sup>68</sup>Ga FAPI-02 and -04 showed comparable dosimetry to <sup>18</sup>F FDG and <sup>68</sup>Ga DOTATATE
- 1<sup>st</sup> generation FAPIs showed short tumor retention
- <sup>68</sup>Ga FAPI-46 displays longer tumor retention
- FAPI tracers reach quickly a stable physiological distribution
- Demonstrate only minimal changes between 10 min and 3 h p.i.





Image adapted from Mori, Y.; et al. Radiology. 2023, 306, e220749

Mori, Y.; et al. *Radiology.* **2023**, *306*, e220749 Lindner, T.; et al. *J. Nuc. Med.* **2018**, *59*, 1415 Loktev, A.; et al. *J. Nuc. Med.* **2019**, *60*, 1421

#### **FAPI Normal Biodistribution**

- <sup>68</sup>Ga labeled FAPIs show intense radioactivity in the urinary tract
- Moderate uptake observed in the submandibular gland, thyroid and pancreas
- Minimal uptake in brain, liver, lung, muscle etc.
- Nonspecific uptake at sites of wound healing





Images adapted from Airo Farulla, L. S.; et al. Clin. Transl. Imaging 2023, 11, 95

UT Southwestern Medical Center Radiology

Airo Farulla, L. S.; et al. Clin. Transl. Imaging 2023, 11, 95

#### **FAPI Use in Oncology**

- <sup>68</sup>Ga labeled FAPIs have been used for imaging of a variety of cancers and have been compared with other imaging radiotracers or modalities
- Potential theranostic applications using <sup>90</sup>Y, <sup>177</sup>Lu, <sup>225</sup>Ac

<sup>68</sup>Ga FAPI-4, 60 min p.i.

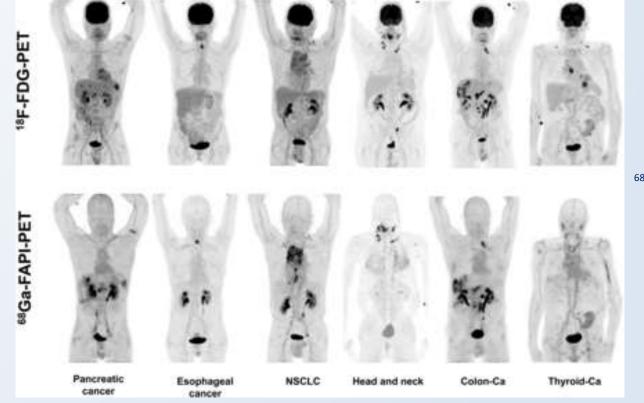


NET

Small-Intestine Ca

Kratochwil, C.; et al. *J. Nuc. Med.* **2019**, *60*, 801 Abdou Sidrak, M. M.; et al. *Int. J. Mol. Sci.* **2023**, *24*, 3863

Thymus Ca


MTC

Radiology

**Prostate Ca** 

#### **FAPI Use in Oncology**

- FAPI performs better than FDG: esophageal, breast, lung cancer, cholangiocellular carcinoma, sarcoma
- FDG performs better than FAPI: thyroid cancer, lymphoma, multiple myeloma
- No differences in performance: prostate, head and neck cancer



<sup>68</sup>Ga FAPi-2, 60 min p.i.

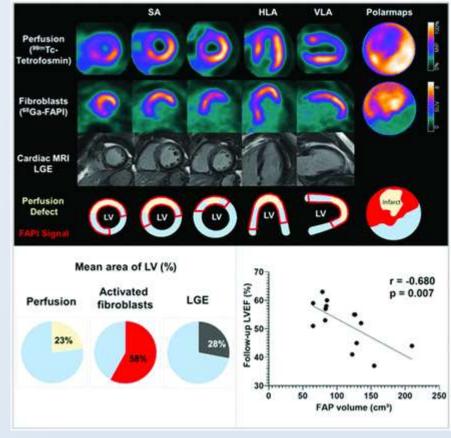

Giesel, F. L.; et al. J. Nuc. Med. 2019, 60, 386

Image adapted from Giesel, F. L.; et al. J. Nuc. Med. 2019, 60, 386

#### **FAPI Use in non-Oncologic Applications**

- Activated fibroblasts found in scar formation, chronic inflammatory processes, fibrosis and benign tumors
- Preliminary studies show potential use of FAPI for imaging liver, kidney and lung fibrosis
- FAPI was evaluated early in patients with acute myocardial infarction and showed a significantly elevated signal in the territory of the culprit infarct vessel compared to SPECT and Cardiac MRI
- Study suggests a relationship between the extent of fibroblast activation and more severe adverse ventricular remodeling





SNMMI 2022 Image of the year

## Radionuclide Tracers for Myocardial Perfusion Imaging

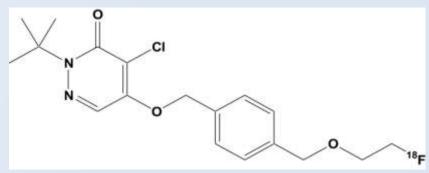
UT Southwestern Medical Center

#### **Myocardial Perfusion Imaging (MPI)**

- Noninvasive tool for the diagnosis and risk stratification of Coronary Artery Disease (CAD)
- Both SPECT and PET routinely used for evaluation of MPI
- Diagnostic and prognostic value of MPI significantly improved due to:
  - Technical improvements of SPECT cameras
  - Availability of PET radiotracers
- SPECT represents the most common practice
  - Lower cost
  - Availability of SPECT cameras
- PET imaging considered the gold standard
  - Higher spatial resolution
  - Ability to obtain attenuation correction

#### **Tracers for Myocardial Perfusion Imaging (MPI)**

- Exercise or pharmacologic stress is a power tool for imaging of myocardial ischemia and infarction
- Tracers should have the ability to be taken up by the tissue and irreversibly retained
- Ideal tracer:
  - High first-pass extraction fraction
  - Linear correlation to coronary blood flow
  - Adequate myocardial retention
  - Isotope with favorable dosimetry,


half-life and energy

| Tracer                      | Modality | Half-Life | First-Pass<br>Myocardial<br>Extraction |
|-----------------------------|----------|-----------|----------------------------------------|
| <sup>15</sup> O Water       | PET      | 2 min     | 100%                                   |
| <sup>13</sup> N Ammonia     | PET      | 10 min    | 80%                                    |
| <sup>82</sup> Rb            | PET      | 72 sec    | 70%                                    |
| <sup>18</sup> F Flurpiridaz | PET      | 2 h       | 94%                                    |
| <sup>99m</sup> Tc Sestamibi | SPECT    | 6 h       | 68%                                    |
| 99mTc Tetrofosmin           | SPECT    | 6 h       | 54%                                    |

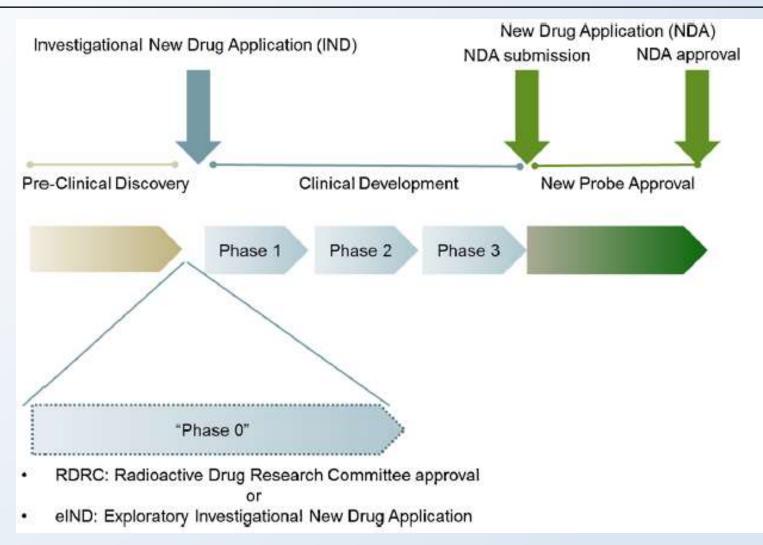
UT Southwestern Medical Center

#### <sup>18</sup>F Flurpiridaz

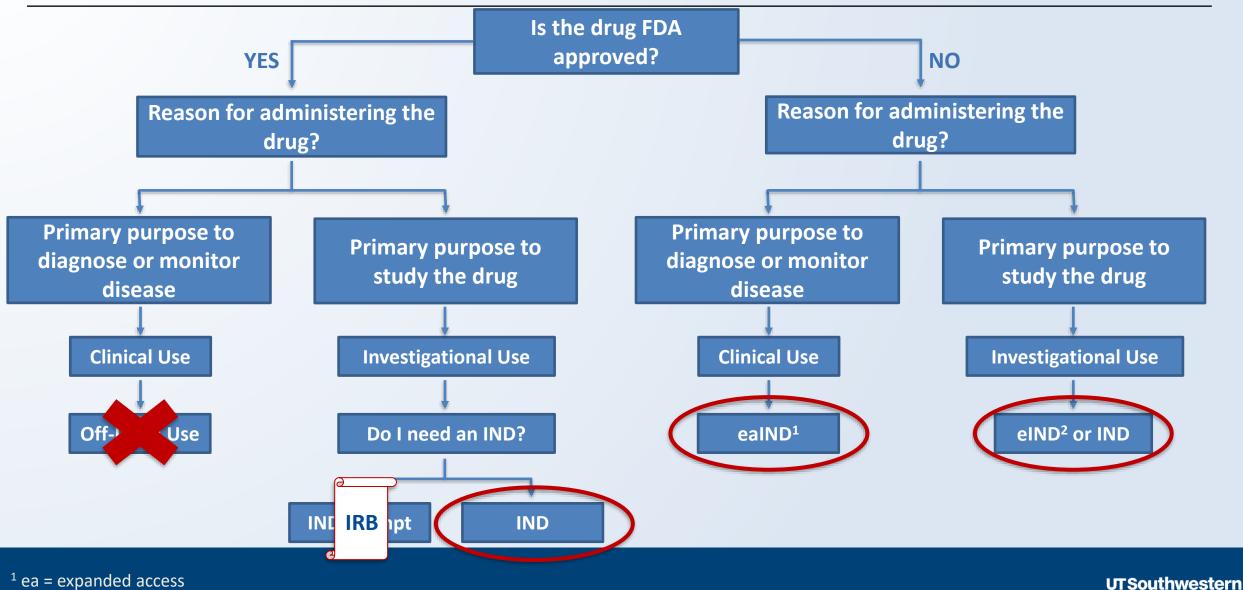
- Currently in Phase III clinical trials
- Binds to mitochondrial complex 1
- Has higher extraction rate than other available PET and SPECT tracers
- Could be used for patients that require exercise stress test
- <sup>18</sup>F half-life can lead to commercial distribution
- Phase I trial showed that flurpiridaz is safe with acceptable dosimetry
- Phase II trial revealed improved coronary artery disease diagnostic performance, image quality and confidence of interpretation when compared to SPECT



#### <sup>18</sup>F Flurpiridaz Phase III Trial


To evaluate the diagnostic performance of flurpiridaz versus SPECT for the detection and evaluation of coronary artery disease (CAD) (≥50% stenosis by quantitative invasive coronary angiography)

- Flurpiridaz showed improved sensitivity in detecting coronary CAD compared to SPECT (71.9% vs 53.7%, p < 0.001)</li>
- Specificity did not meet the noninferiority criterion (76.2% vs 86.6%)
- Inter- and intrareader agreements were high
- Flurpiridaz showed higher sensitivity in identifying multivessel disease (41% vs 27.5%, p < 0.001)
- Image quality for PET was significantly higher than for SPECT for both rest and stress images (89.1% vs 73.9%, p < 0.01 and 97.6% vs 86.9%, p < 0.01)</li>
- Diagnostic certainty was higher
- Radiation exposure was less for PET compared to SPECT
- 7.4% of adverse events were evaluated as possibly related to flurpiridaz, none serious
- 0.5% of adverse events were related to flurpiridaz (dysgeusia and injection site pain)


## Radiopharmaceuticals Lifecycle

UT Southwestern Medical Center

#### **Premarketing Pharmaceuticals Lifecycle**



#### Do I need an IND?



 $^{2}e = exploratory$ 

#### **Clinical Investigations Exempt from IND Requirements**

#### The sponsor is responsible to determine whether the study is exempt

- Certain Research Involving Marketed Drug Products
- Bioavailability or Bioequivalence Studies in Humans

#### Certain Research Involving Marketed Drug Products

Depends on intent of investigation and degree of risk. Exempt if ALL apply:

- ✓ Drug lawfully marketed in the US
- ✓ Not intended to support new indication or changing the label of the drug
- $\checkmark$  Not intended for a significant change in the advertising of the drug
- Does not involve a route of administration, dose, patient population or other factor that increases the risk
- $\checkmark$  Is in compliance with the IRB review and informed consent
- ✓ Not intended to promote or commercialize the product

#### **Information Needed in INDs**

- Preclinical data Animal pharmacology, toxicology and dosimetry studies
- Drug manufacturing information Site specific
- Clinical Protocol
- Investigator information Site specific

#### **Pre-IND Consultation Program**

CDER's Pre-IND Consultation Program enables early communication between sponsors and the FDA's review divisions to provide guidance on the data necessary for a successful IND submission

- Data needed to support the rationale for testing a drug in humans;
- Design of nonclinical pharmacology, toxicology, and drug activity studies
- Initial drug development plans, and regulatory requirements for demonstrating safety and efficacy

#### **IND Content**

Required Forms:

- Form 1571: contact information and specified commitments
- Form 3674: Certification of Compliance

At a minimum an IND should contain:

- Table of contents
- Introductory Statement
- General Investigation Plan
- Investigator's Brochure

Note: An Investigator's Brochure is not required for sponsor-investigators

- Clinical Protocol
- Chemistry, Manufacturing and Controls
- Pharmacology and Toxicology
- Summary of Previous Human Experience
- Other Relevant Information (Radiation Absorbed Dose)

#### UTSouthwestern Medical Center

#### **Exploratory and Traditional IND**

- An eIND applies to early Phase 1 (Phase 0) studies to access feasibility for further development.
- Involves very limited human exposure to the drug (dosing < 7 days)</li>
- Studies have no therapeutic or diagnostic intent (microdose studies)
- Examples of exploratory IND studies:
- Determine if mechanism of action defined by animal studies is also observed in humans
- Pharmacokinetics or biodistribution of the investigational drug
- Select most promising product for further development
- A traditional IND applies to Phases 1 3 studies to evaluate safety and/or effectiveness of a non-approved drug in humans for a potential diagnostic or therapeutic indication
- Microdose is defined as less than 1/100<sup>th</sup> of the dose of a substance calculated to yield a pharmacologic effect (based on animal data) of the test substance with a maximum dose of less than or equal to 100 micrograms (µg). The maximum dose for protein products is less than or equal to 30 nanomoles (nmol).

- Guidance for Industry, Investigators, and Reviewers: Exploratory IND Studies (January 2006)
- Guidance: Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs (December 2012)
- Draft Guidance for Industry: Investigational New Drug Applications Prepared and Submitted by Sponsor-Investigators (May 2015)

#### UT Southwestern Medical Center

#### **Microdose Radiopharmaceutical Diagnostic Drugs**

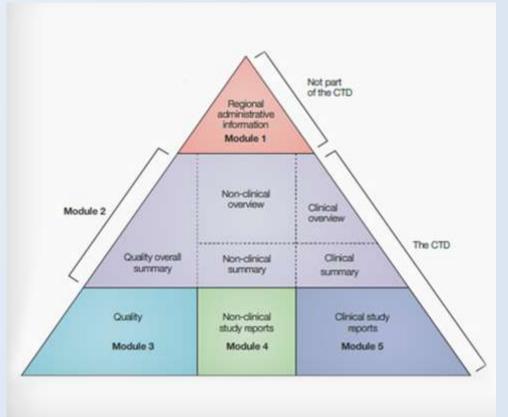
#### Unique nature of PET drugs:

- Radioactive, single dose, microdose
- Facilitate the timely conduct of clinical trials
- Reduce use of animals
- Reduce use of drug development resources

#### Table 1: Recommendations for Nonclinical Studies for Microdose (≤ 100 µg) Radiopharmaceutical Diagnostic Drugs

| Study Type                                                            | Phase             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pharmacology                                                          | Before<br>phase 1 | These studies can include in vivo and in vitro pharmacologic<br>characterizations (e.g., receptor/target/off-target profiling,<br>imaging/radiation dosimetry studies). These studies should<br>provide evidence that radiolabeling of an unlabeled moiety<br>does not significantly alter pharmacologic characterizations.<br>The studies should be of sufficient sensitivity to rule out<br>pharmacologic effects at the anticipated clinical dose. |  |  |
| Extended single-dose<br>toxicity in one species<br>(usually a rodent) | Before<br>phase 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

 Guidance for Industry: Microdose Radiopharmaceutical Diagnostic Drugs: Nonclinical Study Recommendations (August 2018)


| Study Type                                 | Phase                                    | Comments                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Genotoxicity                               | Not needed                               | The exploratory IND guidance states, "Because<br>microdose studies involve only single exposures to<br>microgram quantities of test materials and because such<br>exposures are comparable to routine environmental<br>exposures, routine genetic toxicology testing is not<br>needed."        |  |
|                                            |                                          | This applies to any phase of clinical development when<br>considering that the mass dose remains the same through<br>marketing approval. Genotoxicity risk could be, by<br>default, incorporated in labeling language regarding<br>radiation exposure risk.                                    |  |
| Safety pharmacology                        | Not needed                               | Safety pharmacology studies are not recommended<br>because of the low subpharmacologic dose.                                                                                                                                                                                                   |  |
| Repeat dose toxicity                       | Not needed                               |                                                                                                                                                                                                                                                                                                |  |
| Pharmacokinetic                            | Before<br>phase 3                        | Information on pharmacokinetics (e.g., absorption,<br>distribution, metabolism, excretion) in test species and<br>vitro biochemical information relevant to potential drug<br>interactions should be available before exposing large<br>numbers of human subjects to the investigational drug. |  |
| Developmental and<br>reproductive toxicity | Waiver<br>obtained as<br>per §<br>312.10 | With a waiver, these studies are not necessary because of the inherent radiation risk to the fetus from the radiopharmaceutical drug, which would be reflected in labeling.                                                                                                                    |  |
| Special toxicity                           | As per ICH<br>M3(R2)                     | FDA does not recommend investigating IV local<br>tolerance of a drug substance for microdose studies. The<br>use of novel vehicles or excipients should be governed by<br>applicable ICH and FDA guidances for industry.                                                                       |  |

viedical Cente

#### **New Drug Applications (NDA)**

- NDA is the approval pathway for new drugs that are to be marketed and sold in the US (21 CFR part 314)
- Required for a New Molecular Entity or an Indication not FDA approved
- Requires submission of: preclinical studies, clinical studies, manufacturing processes, quality control
- Application must be submitted in CTD format:

The International Conference of Harmonisation (ICH) developed the CTD structure in order to create a standardized way to organize information within a submission



#### **Abbreviated New Drug Applications (ANDA)**

- ANDA is the approval pathway for generic drugs that are to be marketed and sold in the US (21 CFR part 314)
- DOES NOT require data from: animal studies and clinical studies
- DOES Require:
  - To be comparable to a Reference Listed Drug (RLD) in: characteristics, dosage, formulation, intended use, quality, administration, strength
- A Reference Listed Drug is a drug product approved in a New Drug Application under Section 505(c) of the FD&C Act based on full reports of investigations of safety and effectiveness

#### **FDA Review and Approval**

- The review team has 6 to 10 months to make a decision on whether to approve the drug. The process includes the following:
  - each member of the review team conducts a full review of his or her section of the application there is also a supervisory review
  - FDA inspectors travel to clinical study sites to conduct a <u>routine inspection</u>. The Agency looks for evidence of fabrication, manipulation, or withholding of data
  - The project manager assembles all individual reviews and other documents, such as the inspection report, into an "action package." This document becomes the record for FDA review. The review team issues a recommendation, and a senior FDA official makes a decision
- Based on a recent report, CDER's average time for approval in 2022 was 17.7 months
- On average it takes 10 years and millions of dollars to get a new drug approved by FDA



# Thank you



UT Southwestern Medical Center