

Therapy Radionuclides:

Cathy S. Cutler, Chair of the Isotope Research and Production Department, Brookhaven National Laboratory April 13th, 2024

Disclosures

- I have no financial or professional disclosures
- My background is in Inorganic chemistry and have been involved in isotope production at reactors, cyclotrons and accelerators and perform extractions from unwanted materials.
- Currently work as the Chair of the Isotope Research and Production Department at BNL.
- President-elect of the SNMMI

Clinical Trials

- Ac-225 23 trials, 15 are recruiting with multiple institutions, almost all in the US
- At-211 7 trials, 4 recruiting (1 in Japan and 3-4 at Fred Hutchinson Cancer Center)
- Cu-64, 28 studies, 8 recruiting all in the US
- Cu-67, 5 trials, 3 recruiting, Cu-67-SARTATE, Cu64/Cu-67-SAR-BBN, 64Cu-SAR-bisPSMA/67Cu-SAR-bisPSMA 64Cu-SAR-BBN
- Tb-161, 3 trials all recruiting, all outside of the US
- Lu-177 226 trials, 90 recruiting
- Zr-89 125 trials, 25 recruiting
- Ga-68 604 studies over 200 recruiting
- Lead-212 10 studies, 9 recruiting
- Lead-203, 5 studies none recruiting
- Sm-153, 17 studies, 1 recruiting
- Ra-223, 125 Studies, 19 recruiting
- Re-186, 7 trials, 2 recruiting
- Re-188, 10 trials, 2 recruiting
- Iodine-131, 345 studies, 23 recruiting
- As-72, 9 trials, 3 recruiting

Isotope Production

- US has tended to be highly reliant on foreign supply
- Harvested from waste materials
- Generator systems
- > Reactors from (n, γ) reactions or fission
 - As neutrons have no charge thus probability much higher, targets tend to be smaller and easier to produce
- Accelerators using beams of protons, deuterons, alphas, electrons on targets etc.
 - Charged particles into a highly charged nucleus probability is much lower
 - Tend to have larger targets
 - Isotopes produced tend to be carrier free but not always

Challenges for Radioisotope Supply

- Reactor outages causing shortages in Mo-99/I-131/Lu-177
- Transportation
- Losing expertise
- Ongoing excursions
 - Russia major supplier (some cases sole source) of a range of radioactive and stable isotopes
 - Yb-176 is target material for NCA Lu-177; Ge-68 for Ga68 generators; Ac-225
 - Transportation, financial sanctions against Russia complicating isotope import
 - Potential for future nuclear-related sanctions

Major Isotope Production Reactors

SAFARI, NTP, South Africa

BR2, SCK-CEN, Belgium

HFR, NRG, Netherlands

Opal, ANSTO, Australia

MARIA, Polatom, Poland

MURR, Missouri, USA

LVR-15, UJV, Czech Republic

Paul-Emmanuel Goethals and Richard Zimmermann, MEDraysintell report "Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020" [27], updated by the authors to end of 2022, <u>www.medraysintell.com</u> (February 2023), IAEA

Breakdown of Cyclotrons Worldwide and Energy

Representative list of β- emitting Radionuclides

Radionuclide	Half-life	<i>Mean E</i> β-* (keV)	<i>Mean R</i> β*** (mm)	<i>Ε</i> β-* (max) (keV)	<i>R</i> β-** (max) (mm)
33P	25.4 d	77	0.09	249	0.63
169Er	9.4 d	99	0.14	350	1.1
177Lu	6.7 d	133	0.23	497	1.8
⁶⁷ Cu	61.9 h	141	0.26	575	2.1
131	8.0 d	182	0.39	610	2.3
¹⁵³ Sm	46.8 h	224	0.54	805	3.3
¹⁹⁸ Au	64.8 h	312	0.89	961	4.2
¹⁰⁹ Pd	13.5 h	361	1.1	1028	4.5
¹⁸⁶ Re	3.8 d	349	1.1	1077	4.8
¹⁸⁵ Dy	2.3 h	440	1.5	1285	5.9
⁸⁹ Sr	50.5 d	583	2.2	1491	7.0
32P	14.3 d	695	2.8	1710	8.2
¹⁸⁸ Re	17.0 h	764	3.1	2120	10.4
90Y	64.1 h	935	4.0	2284	11.3

*Mean and maximum energy of beta particles emitted per disintegration (Kocher, 1981)

**Mean and maximum beta-particle range in water [data from p 206 in ICRU Report 37 (1984)]

Table from: Considerations in the selection of radionuclides for cancer therapy by AI Kassis and SJ Adelstein, pp787-794, in Handbook of Radiopharmaceuticals, edited by MJ Welch and CS Redvanly, Wiley 2003.

Physical properties of Selected β- emitting Radionuclides

Radionuclide	Half-life	Mean Eβ* (keV)	Mean Rβ-** (mm)	Eβ* (max) (keV)	<i>R</i> β-** (max) (mm)	Imagable Photons
131	8.0 d	182	0.39	610	2.3	364 keV (82%) 637 keV (7%) 284 keV (6%)
177Lu	6.7 d	133	0.23	497	1.8	208 keV (11.1%) 113 keV (6.6%)
67Cu	61.9 h	141	0.26	575	2.1	93 keV (16%) 185 keV (49%)
90Y	64.1 h	935	4.0	2284	11.3	511 <u>ke</u> V β+ (0.017%)

'Mean and maximum energy of beta particles emitted per disintegration (Kocher, 1981)

**Mean and maximum beta-particle range in water [data from p 206 in ICRU Report 37 (1984)]

Table from: Considerations in the selection of radionuclides for cancer therapy by AI Kassis and SJ Adelstein, pp767-794, in Handbook of Radiopharmaceuticals, edited by MJ Welch and CS Redvanly, Wiley 2003.

Production of ¹⁷⁷Lu

 $^{176}Lu + n \rightarrow ^{177}Lu + ^{177m}Lu$

 ^{176}Yb + n \rightarrow ^{177}Yb \rightarrow ^{177}Lu + β^{-}

Challenges:

- ^{177m}Lu
- Reactor outages

Element	Target Isotope	% Natural Abundance	Cross section σ (barn)	Activation product	Decay Mode	T _{1/2}	Decay product	Specific Activity
Lu	¹⁷⁶ LU	2.59	2.8	^{177m} Lu	β ⁻ , γ & IT	160.4 d	¹⁷⁷ Hf (78.6 %) ¹⁷⁷ Lu (21.4 %)	
			2090	¹⁷⁷ Lu	β ⁻ , γ	6.65 d	¹⁷⁷ Hf	1.1 TBg/mg
Yb	¹⁷⁶ Yb	12.76	2.85	¹⁷⁷ Yb	β-, γ	1.9 h	¹⁷⁷ Lu	3 TBg/mg

Dash A, et al, Nucl Med Mol Imag. 2015 Jun;49(2):85-107

Commercial Sources of ¹⁷⁷Lu

Producer	Reactor(s)	Processing	nca/carrier
BWXT	Bruce Power (CANDU)	Canada	Yes/no
Curium	HFR	Netherlands (Monrol License)	Yes/no
Eckert & Ziegler	Br-2, HFR	Germany	Yes/no
Isotopia	BR-2, HFR McMaster	Israel Canada (AtomVie)	Yes/Yes
ITM-ITG (EndolucinBeta®	BR-2, OPAL, FRM-2 HFR SAFARI ILL(FR)	Germany Australia-ANSTO	Yes/No
JSC Isotope RIAR, other (Russia)		Russia	Yes/Yes
McMaster University	McMaster RR	Canada	Yes/Yes
US DOE/MURR	US DOE/MURR MURR		Yes/Yes
Novartis – AAA/IDB	HFR INM? (Ru), MURR	Netherlands Indiana (2024?)	Yes/Yes
POLATOM (LutaPol) Maria		Poland	No/Yes
BARC/BRIT Dhruva		India	Yes/Yes
SHINE (IOCB Praque License) MURR		USA	Yes/No

Other producers: PARS (Iran), CMR(Russia), Perkin-Elmer (U.S.) and others Slide Courtesy of Ira Goldman

⁶⁷Cu Production

- ⁶⁷Zn(n,p)⁶⁷Cu
 - Need fast neutrons
 - Enriched ⁶⁷Zn target (4% nat. abundance)
- ⁶⁸Zn(p,2p)⁶⁷Cu
 - Enriched ⁶⁸Zn (18% nat. abundance)
 - Need 30+ MeV protons
 - Coproduction of ⁶⁴Cu
- ⁶⁸Zn(γ,p)⁶⁷Cu
 - Electron linac
 - Enriched ⁶⁸Zn target (18% nat. abundance)
 - High specific activity (15 TBq/mg)
 - No coproduction of ⁶⁴Cu

Commercial Sources of ⁶⁷Cu Producer Reaction ⁶⁸Zn(γ,p)⁶⁷Cu NorthStar ⁶⁸Zn(γ,p)⁶⁷Cu lotron ⁶⁸Zn(γ,p)⁶⁷Cu Idaho Accelerator Center

Properties of the Therapeutic Radionuclides

Radionuclide	¹⁷⁷ Lu	⁶⁷ Cu	⁴⁷ SC	¹⁶¹ Tb
Half-life (d)	6.644	2.576	3.349	6.906
Type of Decay (%)	β- (100%)	β ⁻ (100%)	β ⁻ (100%)	β- (100%)
Mean particle energy	133.6 <u>keV</u>	135.9 <u>keV</u>	161.9 <u>keV</u>	154.3 <u>keV</u>
Progeny	¹⁷⁷ Hf (stable)	⁶⁷ Zn (stable)	⁴⁷ Ti (stable)	¹⁶¹ Dy (stable)
Imageable photons (keV)	112.9 (6.23%); 208.37 (10.4%)	184.6 (49.6%); 91.3 (7.6%); 93.3 (3%)	159.4 (68.3%)	74.6 (10.2%)

Second Attendance Verification Code

Alpha Therapeutic Agents

Alpha Emitters

- Ability to deliver target-specific radiation dose due to short & well defined track length (<100 µm)
- High linear energy transfer (LET) properties of alpha can be therapeutically effective in cells with low sensitivity to low-LET radiation (Quality factor = 5)
- Also effective against dormant tumor cells in G_o phase
- Cytotoxicity at both high and low-dose rates
- Works in hypoxic tissues
- Overcome required resistance
- Limited use due to availability, complexation chemistry needs development, requires specialized facilities for handling

Alpha Radionuclide Properties

Radionuclide	Half-life	E _α (keV)	Accompany γ-emission: energy (keV) and branching (%)
¹⁴⁹ Tb	4.12 h	4077	B+, γ = 352
²¹¹ At	7.21 h	5867	$\gamma = 79$
²¹² Bi	60.6 min	8785	$\gamma = 727$
²¹³ Bi	45.7 min	8378	$\gamma = 440$
²²³ Ra	11.4 d	5348 ^{avg}	$\gamma = 269$
²²⁴ Ra	3.62 d	5094 ^{avg}	$\gamma = 241$
²²⁵ Ac	9.92 d	5450 ^{avg}	$\gamma = 86$
²²⁷ Th	18.7 d	5562 ^{avg}	$\gamma = 236 \ (11.5\%)$

Astatine-211

- Production of At-211 (7.2 h)
 - Cyclotron ²⁰⁹Bi(α,2n)²¹¹At (21-29 MeV)
 - Requires moderate energy (peak cross section ~26 MeV) alpha particle beam
 - Need high current beam to provide clinical quantities
- Production of Rn-211 (14.6 h) (in development)
 - Proton spallation of U or Th
 - Requires high energy proton beam
 - Low yield
 - Limited number of accelerators

At-211 Production Capabilities in the U.S.

- Limited production capabilities for At-211
 - None of the DOE/NNSA National Laboratories used by DOE IP are suited to produce At-211.
- ~250 university, hospital and research facility cyclotrons in the U.S. are capable of isotope production
 - Only 5 with potential to produce At-211
- Geographic distribution constraints driven by production batch yields and short physical half-life (7.2 hours)

Evolving Strategy for At-211

- DOE IP recognizes that the production and isolation of At-211 can be challenging. However, we believe that success dramatically increases with cooperation.
- Generation of a notable new literature and general knowledge of the stability and robustness of the product supply chain to encourage clinical evaluation and eventual adoption.
- Maximize the UIN's capability to support U.S. domestic At-211 researchers.
 - Continue to develop production capability at the university sites via grant funding.
 - Gas trapping and generator development can extend shipping range, two approaches are being explored.
 - Explore opportunities for commercialization of At-211 with U.S. private industry.
 - Explore opportunities for development of bench-top accelerators optimized for At-211 production.
- Promote international cooperation and technology exchange.
- <u>World Astatine Community</u> Unveiled at the 12th International Symposium for Targeted Alpha Therapy, representatives from United States, Japan and the European Union announced the World Astatine Community (WAC) a collaborative
 <u>Effort to share</u> astatine production technology

Commercial Sources of At-211

 Ionetix 30 Mev Cyclotron produces first At-211 at facility in April 2023

M. Makvandi et al (2018) Targeted Oncology 13: 189-203

Actinium-225 (9.2 d) Demand

27 molecules labeled with ²²⁵Ac are presently under development, among which 13 have already reached human test level¹

The first ²²⁵Ac-radiopharmaceutical has entered the clinical phase III stage and might **reach the market by 2028**

Patient doses, as informed by clinical trials, are estimated at 1.1-2.4 mCi per patient \mbox{kg}^2

Considering pre-injection decay, **~80 Ci** at end of bombardment would be sufficient to treat 100,000 patients each year

 ^{225}Ac emits four α -particles down to stable ^{209}Pb [3]

Zimmermann, R., Is Actinium Really Happening? J Nucl Med, Aug 2023

²Jang, A., et al., Targeted Alpha-Particle Therapy: A Review of Current Trials, *Int. J. Mol. Sci.* 2023, 24(14), 11626.

³Pallares, R.M, Abergel, R.J., Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand?, *Front. Med. 2022, Vol.9*

Overview of ongoing targeted alpha therapy clinical trials [3]

Radiopharmaceutica	i Ligand	Cancer type	Special notes	Clinical trial*
²¹¹ At-BC8-B10	BC8-B10, antibody targeting CD45	Different types of acute leukemia or myelodysplastic syndrome		NCT03128034, phase I/II, recruiting (2017) NCT03670966, phase I/II, recruiting (2019) NCT04083183, phase I/II, recruiting (2020)
²²³ Ac-Lintuzumab	Lintuzumah, antibody targeting CD33	Acute myeloid leukemia	In comhination with other chemotherapeutic agents	NCT03441048, phase I, recruiting (2018) NCT03867682, phase I/II, recruiting (2020) NCT03932318, phase I/II, not yet recruiting (2023)
313 Pb-DOTAMTATE	DOTAMTATE, somatostatin analog	Somatostatin positive neuroendocrine tumors		NCT03466216, phase I, recruiting (2018) NCT05153772, phase II, recruiting (2021)
BAY2315497 (²²⁷ Th)	Antibody targeting PSMA	Metastatic castration resistant prostate cancer	In combination with darolutamide	NCT03724747, phase I, active but not recruiting (2018)
223 Ac-FPI-1434	FPI-1175, antibody targeting insulin-like growth factor-1 receptor (IGF-1R)	Advanced solid tumors		NCT03746431, phase l/II, recruiting (2019)
BAY2701439 (²²⁷ Th)	Antibody targeting HER2	Advanced cancers expressing the HER2 protein		NCT04147819, phase 1, recruiting (2020)
JNJ-69086420 (²²⁵ Ac)	H11B6, antibody targeting human kallikrein-2 (hk2)	Advanced and metastatic prostate cancer		NCT04644770, phase I, recruiting (2020)
²²⁵ Ac-J591	1591, monoclonal antibody against PSMA	Hormone-sensitive metastatic prostate cancer	In combination with androgen deprivation therapy	NCT04946370, phase l/II, recruiting (2021) NCT05567770, phase 1, not yet recruiting (2022)
223 Ac-PSMA-1&T	PSMA-1&T, small molecule targeting PSMA	Castration-resistant prostate cancer		NCT05219500, phase II, recruiting (2021)
²¹¹ At-OKT10-B10	OKT10, antibody targeting CD38	Plasma cell myeloma in patients undergoing stem cell transplantation	In combination with different chemotherapeutic agents and/or total body irradiation	NCT04466475, phase I, recruiting (2022) NCT04579523, phase I, not recruiting yet (2022)
223 Ac-DOTA-M5A	M5A, anti-carcinoembryonic antigen (CEA) antibody	CEA positive advanced and metastatic colorectal cancer		NCT05204147, phase I, recruiting (2022)
28.2 Pb-DOTAM-GRPR1	Gastrin-releasing peptide receptors (GRPR) antagonist	Several GRPR1-expressing tumors		NCT05283330, phase I, not recruiting yet (2022)
²²³ Ac-DOTA-daratumumab	Daratumunab, antibody targeting CD38	Refractory plasma cell myeloma		NCT05363111, phase I, recruiting (2022)
²²⁵ Ac-FPI-1986	Vofatamab, antibody targeting fibroblast growth factor receptor 3 (FGFR3)	FGFIG-expressing advanced solid tumors		NCT05363605, phase l/II, recruiting (2022)
RYZ101 (²²³ Ac)	Somatostatin analog peptide	Somatostatin receptor expressing gastroenteropancreatic neuroendocrine tumors		NCT05477576, phase l/II, recruiting (2022)
²²³ Ac-MTI-201	MTI-201, peptide targeting nselanocortin 1 receptor (MC1R)	Metastatic uveal melanoma		NCT05496686. phase I, recruiting (2022)
^{20.2} Pb-Pentixather	Pentixather, CXC-chemokine receptor 4	Atypical lung carcinoid tumors		NCT05557708, early phase 1, not recruiting yet (2022)

"The year in the clinical trial row refers to the date when the clinical study was (or is expected to be) initiated.

Th-229 Generator Sources

- Generator Th-229 Sources
 - ORNL, US 130 mCi of Th-229
 - JRC, Karlsruhe, Germany 40 mCi of Th-229
 - IPPE, Russia 130 mCi of Th-229 generator
 - CNL, Canada 5-10 mCi of Th-229

Challenge is the supply of all together is only 1.2-1.7 Ci

Actinium-225 Production at ORNL

- ORNL has been the main supplier of ²²⁵Ac (via decay of existing ²²⁹Th stock) since 1997
- >10 Ci of ²²⁵Ac shipped in >2000 packages
- Approximately 1 Ci of ²²⁵Ac is harvested annually from 130 mCi ²²⁹Th stock at ORNL
- Thirteen 4-week campaigns are performed per year, with weekly customer shipments
- Present supply fully subscribed

²²⁵Ac

Rationale for pursuing additional routes for production of ²²⁵Ac

• The present supply is insufficient to meet the growing research and medical applications demands for

Future Th-229 Sources

TerraPower (US)

Mining medical isotopes from nuclear waste (acs.org)

"Still, the amount of available ²²⁵Ac is at the mercy of natural processes that happen over a very long time. The natural decay of ²³³U and ²²⁹Th is steady and reliable but also incredibly slow. ²³³U has a half-life of 160,000 years, and the half-life of ²²⁹Th is 8,000 years. The long half-lives mean that every year, a kilogram of 233U yields only about 5 mg of ²²⁹Th, which can then decay into the medically valuable actinium. From the remaining ²³³U that Isotek is set to dispose, TerraPower is on track to receive all the thorium that can be extracted during processing, Bolon says. That means TerraPower will get at least 45 g of ²²⁹Th a year, enough to provide 50 to 100 times as much ²²⁵Ac as the DOE is able to provide." (9 Ci/year) Last year TerraPower announced a \$750 million investment from Korea for nuclear technology and nuclear medicine isotope production Agreement with Cardinal Health to distribute Ac-225 from generators Collaboration with PanTera

Viable ²²⁵Ac Production Routes

Facility	Nuclear Reaction
Reactor (thermal neutrons)	²²⁶ Ra(3n,γ) ²²⁹ Ra → ²²⁹ Ac→ ²²⁹ Th
Accelerator (photons via electrons)	²²⁶ Ra(γ,n) ²²⁵ Ra→ ²²⁵ Ac
Accelerator (low energy particles)	226 Ra(p,2n) ²²⁵ Ac 226 Ra(α ,n) 229 Th 226 Ra(p,pn) 225 Ra 232 Th(p,x) 229 Th
Accelerator (high energy protons)	232Th(p,x) ²²⁵ Ac ²³² Th _{(p,x)²²⁵Ra→²²⁵Ac}
Accelerator (high energy neutrons)	²²⁶ Ra(n,2n) ²²⁵ Ra
Hot Cell Facility (²³³ U processing)	²²⁹ Th decay to ²²⁵ Ac

Processing Facilities at BNL: Latest News

- Commissioned new AP hot cells for processing of Ac-225 to meet growing demand
- AP hot cells in routine operations
- A major milestone was achieved!

BNL put 112 mCi of Ac-225 into inventory by irradiation and processing all conducted onsite (BLIP and AP hot cell) – great accomplishment!

- DOE IP now has two processing sites: ORNL and BNL
- DMF filed in December 2023.

Alternative Routes of Production Under Investigation

- Electron linac production route • $^{226}Ra(\gamma,n)^{225}Ra \rightarrow ^{225}Ac$
- Low energy cyclotron route
 ²²⁶Ra(p,2n)²²⁵Ac
- Neutron production route
 [●]²²⁶Ra(3n,γ)²²⁹Ra→²²⁹Ac→²²⁹Th

S. Hogle et al., Reactor Production of Therium-229, Appl. Radiat. Isot. 114, 19 (2016)

Sources of Ac-225 from Ra-226

Ra-226 based:

- Alfarim,
 - AZIsotopes,
 - BWXT/TRIUMF,
 - DOE
 - Eckert & Ziegler,
 - Global Morpho Pharma,
 - PanTera (IBA/SCK)
 - Ionetix,
 - CNL/ITM,
 - Nihon Medi-Physics,
 - Niowave,
 - NorthStar Medical,
 - SpectronRx, others

Photonuclear Routes of Production

- IBA September 20, 2021 Proton therapy developer Ion Beam Applications (IBA) and Belgian nuclear research center SCK CEN have partnered to enable the production of the medical radioisotope actinium-225 (Ac-225). Together, the companies will evaluate the technical and economic feasibility of producing large quantities of Ac-225. SCK CEN and IBA plan to undertake the construction and commissioning of a production unit on the SCK CEN site in Mol, Belgium.
- Niowave photonuclear production from Ra-226. Niowave is operating a closed-loop cycle to domestically produce high-purity Ac-225 and other alpha emitters from Ra-226 using a superconducting electron linear accelerator. The commercial-scale system will produce 10 Ci per week of Ac-225 from a nitrate-based solution of Ra-226. Niowave's superconducting linacs can handle higher production output (>500 Ci per year using a 20 MeV, 210 kW beam) than any other method.
- Northstar indicates they will be producing Ac-225 from Ra-226 by the end of the calender year. Using electron accelerator photonuclear route to irradiate Ra-226 to produce Ac-225. Have stated up to 10 Ci of Ac-225 production in 2 years. Have a supply agreement in place with Point Biopharma Global Inc.

Reactor Production of Alpha-Emitting Radioisotopes

- Radium-226 target
 - Limited quantities (no longer a commercial market; recover from old, unwanted sources)
- Actinium-227 product
 - High yield (>1 Ci per g of Ra in high flux reactor)
- Thorium-228 product
 - High yield (>50 Ci per g of Ra in high flux reactor)

Thorium-229 product

- Low yield (>10 mCi per g of Ra in high flux reactor)

Pb-212 (Supplied as a Pb-212/ Bi-212 Generator)

- Generator demand is increasing
- DOE IP is expanding generator availability in the U.S. to meet demand
- Optimizing current supply from ORNL
 - FY22: record production year of 10 campaigns with 20 generators shipped (≤ 16 mCi each)
 - FY23: production plan for 12 campaigns with plan for 20-24 generators (≤ 16 mCi each)
- Building on R&D for supply from PNNL
 - In FY21, set up & demonstrated the process up to ~3 mCi level
 - In FY22, scaled up to clinically relevant levels (11-19 mCi)
 - In FY23, PNNL is working towards supply of Pb-212 generators (≤ 16 mCi each) on a monthly basis
- Work is underway at both sites to increase generator capacity to ~30 mCi each
 - Completion targeted in early FY23 for ORNL
 - Latter half of FY23 for PNNL

Brookhaven

Th-228 cow is milked for Ra-224 at ORNL

Loading resin contacted with Ra-224 to fabricate a generator

PNNL generators in final packing step

Summary

- > The interest in therapeutic radionuclides is growing in leaps and bounds
- > The production is increasing making radionuclides more readily available
 - DOE IP has ramped up its role in the supply with a goal of maximizing the domestic availability.
 - Several commercial companies are pursuing production
- A robust domestic supply of Ac-225, regionalized production of At-211, and increased availability of Pb-212 generators are being actively pursued in the U.S.
- > Alternative production approaches are being explored for all alpha-emitters.
- In response to increasing market demand DOE IP is increasing the processing capability of several DOE IP sites (CARP at BNL, API at LANL, RPF at ORNL)

Questions?

