

SOUTHWESTERN CHAPTER

# LATEST DEVELOPMENTS IN CZT SPECT IMAGING

### Benjamin Auer, Ph.D

Medical Physicist, Brigham and Women's Hospital Director of Nuclear Medicine Physics, Brigham and Women's Hospital Faculty in Radiology, Harvard Medical School

**BRIGHAM HEALTH** BRIGHAM AND BWH WOMEN'S HOSPITAL 









HARVARD MEDICAL SCHOOL TEACHING HOSPITAL





# I have no relevant financial interests to disclose

**BRIGHAM HEALTH** 







HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 











At the end of this presentation, you will be able to,

A) Recognize the specificity of CZT-based SPECT systems

B) Identify the advantages of CZT detector technology for imaging

C) Categorize the clinical applications of CZT-based SPECT and **SPECT/CT** systems





HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 











- **CZT DETECTORS FOR SPECT**
- **CARDIAC DEDICATED CZT SPECT** П.
- **II. FULL-RING CZT SPECT/CT**
- **IV. CLINICAL APPLICATIONS AND ADDED VALUE**
- V. ABSOLUTE QUANTITATION CALIBRATION





Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

# **VI. IMPACT OF THE CALIBRATION ACCURACY ON QUANTITATION**











# **Characteristics**

Semiconductor at room temperature

**Direct Conversion** of the  $\gamma$ -ray energy into an electronic signal

**Higher Density** than conventional Nal(TI): **5.8** Vs **3.7** g/cm<sup>3</sup>. However, due to cost considerations, CZT detectors are thinner (5 to 7.3 mm) than conventional (9.5 mm). Stopping Power is very similar (~95% for <sup>99m</sup>Tc) [1,2].

[1] Wells, *et al.* J. Nucl. Cardiol. 2020 [2] Slomka, et al. J. Nucl. Med., 2019









HARVARD MEDICAL SCHOOL TEACHING HOSPITAL













# **Characteristics**

- **Geni-Conductor**
- $\Box$  Direct Conversion of the  $\gamma$ -ray energy into an electronic signal
- □ Stopping Power is very similar to Nal(TI)

# **Performance compared to conventional NaI(Tl)+PMT detector** Better Energy Resolution: 5-6% Vs 9-10% for <sup>99m</sup>Tc [1-3]

Improves scatter discrimination with narrower energy window

[1] Wells, et al. J. Nucl. Cardiol. 2020 [2] Slomka, et al. J. Nucl. Med., 2019 [3] Hutton, et al. Clin. Transl. Imaging, 2018

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 











# **Characteristics**

- **General Semi-Conductor**
- $\Box$  Direct Conversion of the  $\gamma$ -ray energy into an electronic signal
- □ Stopping Power is very similar to Nal(TI)

# **Performance compared to conventional NaI(Tl)+PMT detector**

Better Energy Resolution

Improved Detector Spatial Resolution (= pixel size ~2.46 mm, typically) Vs ~3.8 mm for <sup>99m</sup>Tc [1]

[1] Hutton, et al. Clin. Transl. Imaging, 2018









HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 













# **Characteristics**

- Semi-Conductor
- $\Box$  Direct Conversion of the  $\gamma$ -ray energy into an electronic signal
- **G** Stopping Power is very similar to Nal(TI)

# **Performance compared to conventional** NaI(Tl)+PMT detector

- Better Energy Resolution
- Improved Detector Spatial Resolution
- High Count-Rate Capability

**No dead time** or detector saturation in the **clinical range** < 1% count rate loss Vs 20% loss ≥ 250 kcps [1]

[1] GE Healthcare. NM870 SPECT/CT specification sheet

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL











# **Characteristics**

- **Geni-Conductor**
- $\Box$  Direct Conversion of the  $\gamma$ -ray energy into an electronic signal
- □ Stopping Power is very similar to Nal(TI)

# **Performance compared to conventional NaI(Tl)+PMT detector**

- Better Energy Resolution
- Improved Detector Spatial Resolution
- Enhanced Count-Rate Capability
- **Higher Cost**
- Compact Detector facilitates more efficient SPECT System Design

**BRIGHAM HEALTH** 









Phys. Med. Biol., 2011





### **MYOSPECT<sup>®</sup> (GENERAL ELECTRIC HEALTHCARE)**

- □ 19 or 9 (*MyoSPECT ES*) CZT-based detectors
- Multi-Pinhole Collimation
- Each detector focuses on the cardiac region



### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

### **D-SPECT® (SPECTRUM DYNAMICS MEDICAL)**

- □ 9 (*Cardio*) or 6 (*Vista*) CZT-based detectors Focusing Parallel-Hole Collimation
- Each detector focuses on the cardiac region



Courtesy of Spectrum Dynamics Medical









# **FULL-RING CZT SPECT/CT**

### **NOVEL SYSTEM DESIGNS**

- 360-degree acquisition

### **STARGUIDE® (GENERAL ELECTRIC)**

- □ 12 CZT-based detectors 7.25 mm thick; Up to 270 keV
- Swiveling Parallel-Hole Collimation
- Optical Scan Guided

**BRIGHAM HEALTH** BRIGHAM AND **BWH** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

Closer patient contouring compared to conventional systems Adaptive Imaging for a broad range of clinical studies

### **VERITON-CT®** (SPECTRUM DYNAMICS)

- □ 12 CZT-based detectors 200 Series: 6.0 mm thick; Up to 200 keV 400 Series: 7.3 mm thick; Up to 400 keV
- Swiveling Parallel-Hole Collimation
- **Detectors can focus** on a VOI Region





st US Instal

# **FULL-RING CZT SPECT/CT**

# **VERITON-CT**<sup>®</sup>

### SPECT

- □ 12 CZT Swiveling Detectors
- □ 360-degree Acquisition
- Adaptive Imaging
- Parallel-Hole Collimators

### СТ

- □ 16, 64, 128 slices (*0.625 mm*)
- □ Low-dose CT for SPECT AC
- Diagnostic AC

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

# **Applications**





.....

### **VERITON-CT**

### Pressure **Sensitive Cover**

**BRIGHAM HEALTH** BRIGHAM AND BWH WOMEN'S HOSPITAL 



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 







Better Sensitivity and Spatial Resolution because of 360-deg Geometry, Closer-Contouring, and Detector Swiveling/Adaptive Imaging

BWH





HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024







### 14





# **Improved Imaging** Performance









**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 



High Sensitivity and Improved Spatial **Resolution compared to Conventional** Systems

## Sensitivity for a <sup>99m</sup>Tc point source in **head phantom (**cps/MBq**)**

**Conventional dual-head LEHR** Full-Ring CZT (Non-Focus Mode) Full-Ring CZT (Focus Mode)

57.0 **—**73.4 (**+22%**) **——** 342.4 (**+500%**)

# **Tomographic Spatial Resolution**







Adapted from Desmonts, et al. EJNMMI physics. 2020







**3D Dynar** Imagin

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

| naging<br>nce | High Sensitivity and Improved Spatia<br>Resolution compared to Convention<br>Systems                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| ve<br>ng      | Novel Detector Arrangement<br>Versatility in Application<br>Optimum Performance                                         |
| tion          | CT-based Attenuation Correction<br>Scatter Correction<br>Sophisticated Reconstruction Algori<br>Built-into the software |
| mic<br>g      | 360° Acquisition with no Gantry Rota<br>High Sensitivity<br>High Count Rate Capability                                  |











**3D Dynamic Imaging** □ 360° acquisition with no gantry rotation **3** - 10 sec frame rate High Count-Rate capability

> **ATTR-Cardiac Amyloidosis 3D Dynamic Imaging**

- 20 min dynamic scan
- 138 frames of 8.7 sec
- 20.3 mCi (<sup>99m</sup>Tc-PYP)
- 71y Male
- BMI of 26.3
- **Disease Grade 3**



**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Coronal View

### **Transaxial View**







17





## Full-Ring CZT SPECT/CT has major advantages for MPI,

18

compared to conventional SPECT/CT



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### High sensitivity and spatial resolution can improve qualitatively and quantitatively MPI images





### 18

+71%



### Full-ring CZT SPECT/CT has multiple advantages for MPI,

- High sensitivity and spatial resolution that can enhance qualitatively and quantitatively MPI images compared to conventional SPECT/CT and cardiac CZT SPECT
- Enables accurate Attenuation Correction (AC) that can improve accuracy and imaging time (stress-only imaging) compared to cardiac CZT SPECT [1-3]
- Can offer Myocardial Blood Flow (MBF) and Myocardial Flow Reserve (MFR) quantitation, thanks to 3D dynamic imaging capability

# Provides a diagnostic CT for coronary calcium scoring and CT angiography studies [4]

[1] Gowd, et al. J. Nucl. Cardiol. 2014 [2] Huang, et al. J. Nucl. Med. 2016 [3] Hendel, *et al.* J. Nucl. Med. 2002 [4] Slomka, et al. J. Nucl. Med. 2019

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 







### 19



- **AI-Based Attenuation Correction** 
  - **Attenuation** can cause artefacts
  - Dual bed positions (upright/supine) helps resolving such artefacts, thus reducing the need for rest imaging [1]
  - **Al-based Attenuation Correction** has emerged as a powerful tool for low-dose stress-only MPI with single bed position [2-6]
  - TruCorr<sup>®</sup> is commercially available for D-SPECT [7,8]

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Upright



### Supine



- [1] Nishiyama, et al. Circ. J., 2014
- [2] Yang, et al. J. Nucl. Med., 2021
- [3] Chen, et al. J. Nucl. Cardiol., 2022
- [4] Shi, et al. Eur. J. Nucl. Med. Mol. Imaging, 2020
- [5] Liu, et al. J. Nucl. Cardiol., 2021
- [6] Shanbhaq, *et al.* J. Nucl. Med., 2022
- [7] Sanchez, et al. Eur. J. Nucl. Med. Mol. Imaging, 2022
- [8] Ochoa, et al. Eur. J. Nucl. Med. Mol. Imaging, 2022







### 20





Iventional

Co

Ц Д

### Cardiac CZT SPECT (DSPECT) provides, High Performance Cardiac Imaging with Enhanced Image Quality Up to 8 times Sensitivity Increases compared to Conventional Systems



Latest Developments in CZT SPECT Imaging Auer – April 14<sup>th</sup>, 2024



# hnson



### Slightly better performance of TruCorr<sup>®</sup> (Al-based AC) in Supine position

# NAC



**Torso Phantom Study** (<sup>99m</sup>Tc-Sestamibi)

**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



**Stress** equivalent study **Activity ratios** - Myo:BP:Liver:Bkg 10.9:1.4:3.0:1.0 **Equal scan time**: 5 min 30 sec







**MPI WITH CARDIAC CZT SPECT** 

# **SPECT Acquisition** (<sup>99m</sup>Tc-Sestamibi)

**Stress** study

- Dose: 6 mCi
- Scan time: 6 min
- □ 45y Male BMI of 35.6
- w/ and w/o AI-based AC Supine and Upright







### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

### Latest Developments in CZT SPECT Imaging



# **Torso Phantom Study** (<sup>99m</sup>Tc-Sestamibi)

- **Stress** equivalent study
- Activity Ratios Myo:BP:Liver:Bkg 10.9:1.4:3.0:1.0
- Equal Scan time: 5 min 30 sec
- w/ and w/o Al-based AC Supine and Upright





AI-AC TruCorr<sup>®</sup> works well with phantoms VERITON - Focus Cardiac -H4.0 x 1.9 Full-ring CZT leads to better spatial resolution at the expense of lower sensitivity ⊢−17.4 DSPECT-HARVARD MEDICAL SCHOOL 10





TEACHING HOSPITAL Relative Sensitivity (a.u.)

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

**Full-ring CZT** 

Veriton

### **Cardiac CZT** DSPECT











# **SPECT Acquisition** (<sup>99m</sup>Tc-Sestamibi)

**Rest** study Dose: 10 mCi

□ 68y Female □ BMI of 25.3

□ Veriton CT-AC Supine 4 min / 3.8 Mcts

**DSPECT AI-AC** (90 min delay) Upright 6 min / 3.4 Mcts

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 



stCTAC-Upright



Perfusion-Blackout



4: Absent









### **Promising MBF/MFR assessment via SPECT Imaging with Cardiac CZT systems** [1-4], In several single center human studies in which PET was used as reference

[1] Adapted from De Souza, et al. Circulation: Cardiovascular Imaging, 2022 **MBF** 4.0-5.0-N=21 N=21 r = 0.81, p<0.001 r= 0.74, p<0.001 Global SPECT MBF (ml/min/g) 4.0-3.0-MFR SPECT 3.0-2.0-Global 2.0-1.0-1.0-Rest MBF Stress MBF .0-.0-1.0 2.0 .0 1.0 2.0 3.0 4.0 .0 Global PET MBF (ml/min/g)

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

- [2] Wells. J. Nucl. Med. 2017
- [3] Otaki. J. Nucl. Cardiol. 2021
- [4] Agostini. Eur. J. Nucl. Med. Mol. Imaging, 2018



With Improved 3D Dynamic Imaging Capability, Full-Ring CZT SPECT/CT has the potential to enhance further MBF/MFR quantitation.

3.0 4.0 5.0

**Global PET MFR** 













Full-Ring CZT SPECT/CT has major advantages for MPI,





Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Offers Myocardial Blood Flow (MBF) and Myocardial Flow Reserve (MFR) quantitation, thanks to **3D dynamic imaging** capability. CT-AC provides higher accuracy compared to cardiac CZT SPECT





# 6-min 3D Dynamic SPECT/CT Acquisition (99mTc-Sestamibi)

- **Rest** study
- Bolus Injection (20 mCi)
- □ 67y Male
- □ BMI of 30.7
- **Framing:** 9x8 sec, 1x16 sec, 2x24 sec, 7x32 sec



# **9-min Gated SPECT/CT Acquisition**



### Short Axis





Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### **Time Activity Curves** 250 200 300 Time (sec) Global RV

# Net Retention Model **MBF (ml/min/g) ~** 0.62







28



# 6-min 3D Dynamic SPECT/CT Acquisition (99mTc-Sestamibi) – Another Example Rest-Only









Flow



**BRIGHAM HEALTH BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 



Algorithm (Rst): VERITON MIBI ROI NetRet Leppo AC Algorithm (--): --

### **Global Results**

|        | Mean |         | Flow (ml/min/g) |   |
|--------|------|---------|-----------------|---|
| Region | Rst  | =       | Rst             | = |
| LAD    | 70%  | <u></u> | 0.61            |   |
| LCX    | 78%  |         | 0.69            |   |
| RCA    | 86%  |         | 0.81            |   |
| TOT    | 77%  |         | 0.68            |   |











# 7-min 3D Dynamic SPECT/CT Acquisition (99mTc-Sestamibi) – GE Starguide



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

| Mean   |        | Flow (ml/min/g) |        |         |
|--------|--------|-----------------|--------|---------|
| MC Str | MC Rst | MC Str          | MC Rst | Reserve |
| 81 %   | 79 %   | 1.21            | 0.60   | 2.03    |
| 85 %   | 76 %   | 1.35            | 0.72   | 1.87    |
| 76 %   | 64 %   | 1.26            | 0.43   | 2.90    |
| 81 %   | 74 %   | 1.24            | 0.55   | 2.27    |

with flow <u>S</u> C S 1839. SPECT when 837 cardiac . . CZI 50(6)Dynamic 3D-ring ET. EJNMMI, 2023) ш Ļ inspired by P measuremer et al. Bailly,







**Cardiac Amyloidosis** is a form of **progressive heart failure** (protein misfolding disorder)

Scintigraphy and SPECT/CT with Bone Avid Tracers (<sup>99m</sup>Tc PYP/DPD), □ >91% sensitive, 87% specific for cardiac ATTR [1]

**Standard of Care for Diagnosis** [2]

# Potential Roles

- Prognosis
- > Early diagnostic
- > Assessment of **disease progression**
- Assessment of treatment response

**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

[1] Gillmore JD, et al. *Circulation* 2016. [2] Dorbala, et al. *Circulation: Cardiovascular Imaging*, 2021.













# SPECT is recommended over scintigraphy [1,2], Delineate blood pool from myocardial activity

# **SPECT/CT** is superior to SPECT [1,2] Attenuation and Scatter Correction Improved Quantitation Anatomic localization – particularly valuable for low-uptake scans and blood pool delineation

[1] Dorbala, et al. *Circulation: Cardiovascular Imaging*, 2021.

**BRIGHAM HEALTH BRIGHAM AND BWH** WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Scintigraphy (planar)

### SPECT/CT



Adapted from [2] Hanna, et al. *Journal of the American College of* Cardiology, 2020.









# Quantitative Full-Ring CZT SPECT/CT offers the potential for early detection, risk stratification, and monitoring of response to therapy in cardiac amyloidosis patients

Grade 0

Grade 1



Adapted from Dorbala, et al. Journal of Nuclear Medicine, 2021





**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 









### **3D Dynamic Imaging enables**,

Segmentation of blood pool region from early frames to improve quantitation Determination of PYP/DPD myocardium uptake over time to reduce uptake time

**Early Imaging** 

### **Dynamic SPECT/CT**

20 mCi (<sup>99m</sup>Tc-PYP) 82y Male Positive Case BMI: 24.7

# Myocardium Act. Conc. (Bq/ml) 6×10<sup>4</sup> 4×10<sup>4</sup> and and a state of the second 2×10<sup>4</sup> Ave 100 200 Time (sec) Early 5-min scan focus on the heart

8×10<sup>4</sup>

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024





### 34



### **3D Dynamic Imaging enables**,

Segmentation of blood pool region from early frames to improve quantitation Determination of PYP/DPD myocardium uptake over time to reduce uptake time

Cardiac Uptake already seen early on

70 min post-injection Higher Myocardial Uptake than the clinical scan



- Uptake time can very likely be shortened, resulting in improved Clinical Care











# **Full-ring CZT SPECT/CT offers**

High sensitivity and improved spatial resolution that can enhance image quality and quantitation while reducing the acquisition time and/or injected dose

CT-based anatomic information that can be used for ROI definition and to aid localization [1-3]

Enhanced **3D dynamic capability** 

[1] Jacene, et al. Open Med Imaging 2008. [2] Arun, et al. Nucl. Med. Commun. 2013. [3] Eldredge, et al. Obesity Surgery. 2020.







HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### 40 min total scan time **Dynamic SPECT/CT**














# **Dynamic SPECT/CT Acquisition (**<sup>99m</sup>**Tc-ECD)**

□ 79y Male **BMI**: 21 Dose: *17.9 mCi* 



Transverse

Sagittal

### **BRIGHAM HEALTH**



BRIGHAM AND WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

Régional Universitaire (CHRU) de Nancy,

Coronal









# Nancy, France



# **Full-ring CZT SPECT/CT**

Can offer **CT-based anatomic information** that can be used for ROI definition compared to SPECT-only and planar

Provides **3D dynamic capability** that can enhance multi-phase bone imaging compared to **conventional SPECT/CT** (*limited to 2D Dyn Imaging*)

### **Three Phase Bone** SPECT/CT

- 45y Male
- BMI: 26.6
- <sup>99m</sup>Tc-HMDP 12.1 mCi



Mairal *et al.* . Eur J Nucl Med Mol Imaging.



**BRIGHAM HEALTH BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



### Flow phase ()

### **BP phase (II)**



### **Delayed phase (III)**



**Dynamic SPECT/CT** 2 min

Static SPECT/CT 5 min

Static SPECT/CT 5 min





Images Courtesy of CHRU Nancy, France













**APPLICATION TO HEPATOBILIARY IMAGING** 

# **Full-ring CZT SPECT/CT offers**

High sensitivity and improved spatial resolution that can enhance image quality and quantitation while reducing the acquisition time and/or injected dose

CT-based anatomic information that can be used for ROI definition and to aid localization [1-3]

Enhanced **3D dynamic capability** 

### **Dynamic SPECT 30** min (360 frames of 5 sec)



by planar CCK

[1] Jacene, et al. Open Med Imaging 2008. [2] Arun, et al. Nucl. Med. Commun. 2013. [3] Eldredge, et al. Obesity Surgery. 2020.

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

30 frames of 1 min

**Planar CCK delayed at 60 min** – 25% Ejection fraction

# **Dynamic SPECT-only followed**

26y Female; BMI: 41.5 <sup>99m</sup>Tc-diisopropyl IDA: 5 mCi











Major Liver Resection can be performed with limited morbidity and mortality when sufficient remnant liver function remains to avoid Post-Hepatectomy Liver Failure (PHLF).

**Pre-operative assessment** of the future remnant liver function is essential [1,2]

Current Standard – Indirect Imaging Approach 1. Dynamic Planar Imaging to assess total liver function (6 min)

# **Role for Full-Ring CZT SPECT = 3D Dynamic Imaging**

- **Facilitate** the procedure single dynamic SPECT only
- > Direct liver remnant function assessment
- Enhance quantitative accuracy no activity superimposition

[1] Rassam, et al. Nuc. Med. Commun. 2019. [2] Serenari, et al. Ann. Surg. 2018

**BRIGHAM HEALTH** 







- 2. Fast static SPECT/CT at liver maximum uptake to segment remnant/resected liver regions (10 min)













# **SEMI-QUANTITATIVE HEPATOBILIARY IMAGING**

# **Total Liver Function**

- 99mTc-Mebrofenin (6.5 mCi)
- **Dynamic Planar Imaging (10** sec/frame)
- Geometric mean from ANT and POST views to correct for source non-uniformities.

ROIs for Liver, Blood Pool, and Total Body/FOV





Latest Developments in CZT SPECT Imaging





# **Total Liver Function Estimated** from 2D Dynamic Imaging

**Time Activity Curves** 



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

## **Total Liver Uptake**

$$TL - U = 100 \times \frac{(AUC_{Liver} - AUC_{BP})}{AUC_{WB}}$$
$$TL - U = 66.8\%$$

- Whole Body
- **Total Liver**
- **Blood Pool**

**400 Mass General Brigham** 



# **Remnant/Resected Segmentation - % Counts from Static SPECT/CT**



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024









# HIBA-i quantitation

## **Dynamic Planar**

6sec\_BP1\_MVP\_Planar:D1 :20:59

Static SPECT/CT



### TL - U = 66.8%

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



used to predict Post-Hepatectomy Liver Failure (PHLF)

### $HIBA - i = TL - U \times \%Counts = 35.2\%$

Compared against population-based cutoff values to determine risk of PHLF ( $\geq$ 15%) [1,2]

[1] Rassam, et al. Nuc. Med. Commun. 2019 [2] Serenari, et al. Ann. Surg. 2018









# Full-ring CZT Hepatobiliary SPECT/CT,

### Enables **3D dynamic quantitative imaging**

Remnant liver function can be **directly** evaluated from **3D** dynamic SPECT/CT

More accurate liver/remnant function estimation since no superimposition of activity (*tends to be overestimated*) with planar imaging) **3D** View

### **BRIGHAM HEALTH**



BRIGHAM AND WOMEN'S HOSPITAL

**Liver Remnant** Liver Resected **Blood Pool** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024







Sagittal





### 45



# **HIBA-i from 3D dynamic SPECT/CT**

BWH







# **Full-ring CZT SPECT/CT**

Allows the detectors to be positioned very close to the patient's head, providing high sensitivity and improved spatial resolution

**Can enhance image quality** as well as accuracy and precision of quantitation while reducing the acquisition time and/or injected dose [1-4]

Has the potential to enable **C**erebral **B**lood **F**low (**CBF**) quantification, thanks to **3D dynamic imaging capability** 

[1] Bordonne, et al. EJNMMI 2020. [2] Piatkova, et al. Clinic. Nucl. Med. 2022. [3] Rogash, et al. Nuklearmedizin-NuclearMedicine. 2019. [4] Huh, et al. Med. Phys. 2021.

**BRIGHAM HEALTH** 







HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

ad Phantom













# **SPECT/CT Acquisition** (<sup>123</sup>**I**)

## **Striatal Phantom** study

- Dose: *3.8 mCi*
- Str/Bkg ratio 8:1



Comparison for an **equal** Scan Time (~3 min) against a conventional SPECT/CT with //-hole LEHR collimator (Siemens Intevo)

Conventiona SU

NO sub Rq OC Full-Ring S

BWH





HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 





# **SPECT/CT Acquisition** (<sup>123</sup>**I**)

### **Striatal Phantom** study Dose: *3.8 mCi*

Str/Bkg ratio 8:1

Comparison for **an equal** Scan Time (~3 min) against a conventional SPECT/CT with //-hole LEHR collimator (Siemens Intevo)

onventional Sub

N O sub Full-Ring

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 





# **SPECT/CT Acquisition (**<sup>99m</sup>**Tc**)

- **3D Hoffman Phantom** study Dose: 10.5 mCi
- Gray/White matter ratio 4:1
- Comparison for an equal Count Level (5.5 Mcts) against a conventional SPECT/CT with //-hole LEHR collimator (Siemens Intevo)



**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



Mass General Brigham





### 50



# **SPECT/CT Acquisition (**<sup>99m</sup>**Tc**)

- **3D Hoffman Phantom** study Dose: 10.5 mCi
- Gray/White matter ratio 4:1
- Comparison for an **equal** Count Level (5.5 Mcts) against a conventional SPECT/CT with //-hole LEHR collimator (Siemens Intevo)

Conventional Sub  $\overline{\mathbb{C}}$ ash  $\infty$ 



Coronal

CZT sub.  $\mathbf{O}$ Ř Full-Ring <u>.</u> ഗ 8 00 00



**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



Mass General Brigham









# **SPECT/CT Acquisition (**<sup>99m</sup>**Tc-HMPAO)** — Clinical Study



**BRIGHAM HEALTH** 



WOMEN'S HOSPITAL



**TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

Adapted from Bordonne et al. EJNMMI physics, 2020.







**Patient Positioning** is of **critical importance**!

**Detectors** need to be **positioned as close** as possible to the **brain** for **optimal imaging** Otherwise, **loss of spatial resolution**!

**Shoulders** must be **cleared**. Wider part of the **Head Holder** can also prevent detectors to be close enough!

Need 1) for technologist training plus 2) to review data QC.



# **Optimal Positioning Sub-Optimal** Positioning **Detectors are a Few Centimeters Further away!** Head Holder moved too far into the gantry!







# **Brain Perfusion SPECT/CT Acquisition (**<sup>99m</sup>**Tc-ECD)**

### □ 61y Male; Administrated Activity: 30 mCi



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### **Results in a Loss of Sp Resolution (***blurring***)**



### 54





**Conventional SPECT** suffers from,

- **Poor sensitivity** (need to rotate to record data),
- Being not really designed for multi-bed SPECT Imaging

**Conventional SPECT Imaging** relies on a mix of **planar 2D imaging** (to identify the disease extent) and single or dual-bed SPECT on areas of interest. Results in Long Acquisition Time!

Full-Ring CZT SPECT alleviates these limitations by enabling rapid whole-body SPECT/3D imaging, plus offers built-in quantitation [1-4]!

[1] Melki, *et al. EJNMMI* 2020. [2] Imbert, et al. J. Nucl. Med. 2019. [3] Bahloul, et al. EJNMMI, 2023 [4] Song, et al. EJNMMI. 2023.

**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

**Dependence** on additional package or third-party software for absolute quantitation,













# **Full-Ring CZT SPECT/CT**

Provides high sensitivity and improved spatial resolution that enhance image quality and quantitation while reducing the acquisition time and/or injected dose compared to conventional SPECT/CT [1-4]

Enables rapid 3D whole-body imaging

Improves **image contrast** for bone lesions compared to inherently limited planar imaging, which results in better localization of abnormal accumulations [1-4]

[1] Goshen, et al. EJNMMI Phys. 2018. [2] Melki, et al. Eur. J. Nucl. Med. Mol. Imaging 2020. [3] Imbert, et al. J. Nucl. Med. 2019. [4] Yamane, et al. Eur. J. Nucl. Med. Mol. Imaging. 2019.

### **BRIGHAM HEALTH**







HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



### Whole Body SPECT/CT

- Scan time ~ 20 min
- 59y Female
- BMI: 23.8
- <sup>99m</sup>Tc-HMDP 11.7 mCi

Phy













Starguide SPECT/CT

Pseudo-planar Starguide images



**WB 3D SPECT** 

### Synthetic 2D planar created from WB SPECT image

Scan Time ~ 20 min

**BRIGHAM HEALTH** 



BRIGHAM AND WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024





Conventional planar images



### **2D** Planar Images

Scan Time = 15 min -Speed = 16 cm/min



Usually followed by **Single-bed SPECT** (additional **20-30** min)









**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

















### Modulation of the detector contouring per bed. Focus VOIs derived from CT

### Provides a **uniform scan time** per **millimeter**. Noise equivalent image per bed.

**Improvement** in sensitivity resulting in **further scan time** reduction (15-20 min down to 10 min)

Adapted from Bahloul, A., Verger, A., Lamash, Y., Roth, N., Dari, D., Marie, P. Y., & Imbert, L. (2023). Ultra-fast whole-body bone tomoscintigraphies achieved with a high-sensitivity 360° CZT camera and a dedicated deep-learning noise reduction algorithm. *European Journal of Nuclear* Medicine and Molecular Imaging, 1-6.











### Further scan time reduction can be achieved with Al-denoising from 10 min down to 6 min (1 min/bed)

### 6 min

75 years-old man BMI=34 kg.m<sup>-2</sup> Injection: 595 MBq

Adapted from Bahloul, A., *et al.* (2023). Ultra-fast whole-body bone tomoscintigraphies achieved with a high-sensitivity 360° CZT camera and a dedicated deep-learning noise reduction algorithm. *European Journal of Nuclear Medicine and Molecular Imaging*, 1-6.

BRIGHAM HEALTH BRIGHAM AND WOMEN'S HOSPITAL Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

6 min Al-denoising

10 min

**10 min** *AI-denoising* 





# **Full-ring CZT SPECT/CT**

- Provides high sensitivity and improved spatial resolution that enhance image quality and quantitation while reducing the acquisition time and/or injected dose [1-4]
- Improves image contrast for bone lesions compared to inherently limited planar imaging, which results in better localization of abnormal accumulations [1-4]

Can provide **CT-based anatomic information** that can be used for Partial Volume Correction (PVC) to further improve image quality and quantitation compared to **SPECT-only and planar imaging** 

[1] Goshen, et al. EJNMMI Phys. 2018. [2] Melki, et al. Eur. J. Nucl. Med. Mol. Imaging 2020. [3] Imbert, et al. J. Nucl. Med. 2019. [4] Yamane, et al. Eur. J. Nucl. Med. Mol. Imaging. 2019.

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024











Scan time: 15 min 53y Female BMI: 25.5 <sup>99m</sup>Tc-HMDP 12.1 mCi 







# **APPLICATION TO THERANOSTICS**

[3,4]

image directly <sup>177</sup>Lu

acquisition because of poor sensitivity [5]

[1] Sartor, et al. N Engl J Med. 2021.

[2] Strosberg, et al. N Engl J Med. 2017.

[3] Sgouros, *et al.* J. Nucl. Med. 2021.

[4] Pandit-Taskar, et al. J. Nucl. Med. 2021.

[5] Pathmanandavel, et al. J. Nucl. Med. 2022.

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

- **Rapid growth** of **targeted radionuclide therapies**, such as <sup>177</sup>Lu-Dotatate and <sup>177</sup>Lu-PSMA [1,2]
- Major Interest in personalized dosimetry and treatment response assessment and monitoring
- **SPECT** has major advantages compared to PET for image-based dosimetry due its **capability to**
- Growing need for high-speed whole-body SPECT/CT. Conventional SPECT is limited by long
- Full-Ring SPECT/CT can overcome these challenges thanks to its improved imaging performance











# **SPECT/CT Acquisition (177Lu)**

- Uniform Phantom study
- Dose: 30 mCi
- □ Volume: 6415 ml

### Conventional

Siemens Intevo w/ MEGP 208 keV ± 10 % Upper/Lower Scatter windows 10% CTAC

### Full-Ring CZT

Veriton 200 Series 113 keV ± 10 % Upper/Lower Scatter windows 10% CTAC







**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Sensitivity for a uniform cylinder

Improvement in sensitivity of 3-fold for the least abundant <sup>177</sup>Lu-peak

**Further enhancement** with Veriton 400 series and Starguide capable to image both peaks of <sup>177</sup>Lu













# **SPECT/CT Acquisition**

### **Full-Ring CZT**

GE StarGuide

113 keV ± 10 % & 208 keV ± 6 % Upper/Lower Scatter windows 10% CTAC

4 bed positions / 12 min total scan

Conventional 

GE 670 Pro w/ MEGP 113 keV ± 10 % & 208 keV ± 6 % Upper/Lower Scatter windows 10% CTAC

2 bed positions / 32 min total scan

Full-Ring

onventional

**BRIGHAM HEALTH** 

BWH

**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

# Dotatate **PSMA** 4 beds in 12 min!









# **Total BodySPECT/CT** Acquisition (177Lu)

□ 67y Male

- BMI: 22.6
- Dose: 202.3 mCi of <sup>177</sup>Lu-PSMA
- Acquisition time: 18 min

# **Full-Ring CZT**

Veriton 200 Series 113 keV ± 10 % Upper/Lower Scatter windows 10% CTAC



CT

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### SPECT

### SPECT/CT



### 18 min

Images courtesy of Centre Hospitalier Régional Universitaire (CHRU) de Nancy, Nancy, France









### Veriton 200 Series 113 keV peak



### 18 min

### 18 min



**BRIGHAM HEALTH** BRIGHAM AND WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

# Veriton **400** Series 113 & 208 keV

1 / 48 (0.0°) 🚺







113 & 208 keV

1/48





### SPECT/CT Fusion

Images courtesy of Centre Hospitalier Régional Universitaire (CHRU) de Nancy, Nancy, France







Sacral

met

# **QUANTITATIVE LU-177 SPECT/CT IMAGING**

### Ga-68 Dotatate PET/MR Survey

8 mo prior to Lu-177 therapy

# Cycle 1 Max SUVbw = 2.9

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024



Cycle 2 Cycle 3 Cycle 4 1.9 1.0 1.5 4-6 hrs after Lutathera administration, imaged on Veriton SPECT/CT

**USA** MN, Ster. the Ο Of SV  $\mathbf{O}$ -----S Image: May







# **QUANTITATIVE FULL-RING CZT SPECT/CT**

# Absolute Quantitation



**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

- **CT** Attenuation and Scatter Correction **Resolution Recovery Sophisticated Reconstruction Algorithm**
- Image natively produced in Activity Concentration (Bq/ml)
  - $\rightarrow$  Need for Correction Factor!











## WHAT to Calibrate? — Image Counts Into Activity Concentration (Bq/ml)

### **Controllable technical factors** related to image acquisition and formation?

| Parameters                                                   | <b>Conventional SPECT</b> | Full-Ring CZT SPECT | PET |
|--------------------------------------------------------------|---------------------------|---------------------|-----|
| Angular sampling                                             |                           | X                   | X   |
| Acquisition Range (180/360)                                  |                           | X                   | X   |
| Orbit type and distance                                      |                           |                     | X   |
| Collimators                                                  |                           | X                   |     |
| Matrix Size / Voxel Size                                     |                           |                     |     |
| Acquired Counts                                              |                           |                     |     |
| Nuclide / Energy Window                                      |                           |                     | X   |
| Scatter Correction Method                                    |                           |                     | X   |
| Reconstruction Parameters (# iteration, filters, algorithm,) |                           |                     |     |

### **BRIGHAM HEALTH**



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024









# **ABSOLUTE QUANTITATION CALIBRATION**

# **HOW to Calibrate?**

# **Cross-Calibration against Dose-Calibrator with Uniform Flood Phantom**

| Parameters                                                   | Full-Ring CZT SPECT |  |
|--------------------------------------------------------------|---------------------|--|
| Angular sampling                                             | X                   |  |
| Acquisition Range (180/360)                                  | X                   |  |
| Orbit type and distance                                      |                     |  |
| Collimators                                                  |                     |  |
| Matrix Size / Voxel Size                                     |                     |  |
| Acquired Counts                                              |                     |  |
| Nuclide / Energy Window                                      |                     |  |
| Scatter Correction Method                                    |                     |  |
| Reconstruction Parameters (# iteration, filters, algorithm,) |                     |  |

**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

Uniform Flood Cylinder (as in PET) **Calibrated against Dose Calibrator** How Robust are these factors? Variability?











# **Uniform Flood Calibration**

- Acquisition of a **Uniform Flood phantom** with **clinical protocol parameters**
- High Count level (32 Mcts) to minimize noise
  - **Reconstruction parameters** and **scatter correction** similar to clinical protocol parameters
  - Estimation of the Activity Recovery Coefficient ARC or **Calibration Factor (=** *image concentration/true concentration***)**. True concentration obtained from known activity (DC) and phantom volume (6415 ml)

**BRIGHAM HEALTH BRIGHAM AND BWH** WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024











# **How Many Iterations is Optimal?**

**ARC** is stable over iterations

**Not too many** to avoid incorporating **excessive noise** (increases variability)

Not too few to ensure convergence

VOI used for ARC calculation



**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL 



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL




### What Should be the VOI size?

Not too small to avoid incorporating excessive noise (*increases variability*). Higher likelihood of including more scatter/attenuation effects in small VOIs.

Not too large to exclude edge effects



VOI used for ARC calculation





**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL









### **Can any other source objects be used for** calibration?

Uniform Flood phantom might not be adequate for long-lived nuclides (e.g., Lu-177, In-111, I-131) in practice as it needs to be stored until it has decayed.

**Flask** or **Syringe** would be more convenient in practice.

What is the impact of the calibration source objects on absolute quantitation?

















# calibration?





**CROSS-CALIBRATION WITH DOSE CALIBRATOR** 

## What is the Impact of the Calibration Accuracy **on Absolute Quantitation?**

Cardiac Torso Phantom <sup>99m</sup>Tc-MPI Study

Clinical Count level (stress): 1.6-3 Mcts

**True** Activity Concentration *Myocardium:* 543.3 kBq/ml Blood Pool: 61.9 kBq/ml Liver: 148.8 kBq/ml Background: 49.6 kBq/ml

**VOIs** derived from CT-AC (for Myocardium)

Myocardium: 99.6 ml Blood Pool: 0.5 ml *Liver: 13.2* ml Background: 43 ml



**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 











**BRIGHAM HEALTH** 



**BRIGHAM AND** WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 







**IMPACT OF CALIBRATION ACCURACY ON QUANTITATION** 

### What is the Impact of the Calibration **Accuracy on Absolute Quantitation?**

Cardiac Torso Phantom Study Clinical Count levels (Stress <sup>99m</sup>Tc-MPI) 4 it. 8 sub. OSEM + RR/AC/SC

Calibration derived from the uniform cylinder leads to the **most accurate quantitation** (ARC~1) on overall.

Flask Calibration underestimates overall the true concentration, achieving the lowest ARCs.

Syringe Calibration strongly overestimates true **concentration**. However, by chance, the syringe calibration led to the best ARC for the myocardium, as the syringe and the myocardium were **similarly affected** by PVE.

**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging





## **CALIBRATION IN CLINICAL PRACTICE**

### **Absolute Calibration derived from** a Jaszczak Phantom Acquisition?

**Calibration Scan** 10 Mcts Non-Focus Mode (<sup>99m</sup>Tc) 4 it. 32 sub. OSEM + RR/AC/SC

Jaszczak phantom acquisition (*usually*) enters quarterly QC.

Easier to derive a calibration factor from such **frequent scans** than with uniform phantom!

**Calibration factor** remains close to what is **derived** from a uniform cylinder. Small Impact on Absolute Quantitation (assessed torso phantom)!

**BRIGHAM HEALTH BRIGHAM AND** BWH WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 









### Veriton or StarGuide? Pretty close



Veriton Max SUVbw = 8.5Mean SUVbw = 5.2Min SUVbw = 3

StarGuide Max SUVbw = 7.9Mean SUVbw = 5.5Min SUVbw = 3.4

Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

### Images Courtesy of the Mayo Clinic, Rochester, MN, USA

### Veriton or StarGuide? Pretty close

Veriton Max SUVbw = 4.4Mean SUVbw = 2Min SUVbw = 0.3



StarGuide Max SUVbw = 3.8Min SUVbw = 0.4





**CZT detector technology enables innovative SPECT system design** 

### Full-Ring CZT SPECT/CT,

- SPECT systems leading to **enhanced imaging performance**
- Enables 3D dynamic imaging
- dosimetry

**BRIGHAM HEALTH BRIGHAM AND BWH** WOMEN'S HOSPITAL



Latest Developments in CZT SPECT Imaging B. Auer – April 14<sup>th</sup>, 2024

# Offers improved sensitivity, energy resolution, and spatial resolution compared to conventional

## Yermits quantitative rapid whole-body SPECT/3D imaging essential in high volume practice

✓ Has the potential to deliver more precise quantitative imaging compared to conventional SPECT/CT systems with promising application in theranostics for treatment monitoring and personalized

Yere a provides adaptive data acquisition for improved imaging in a broad range of clinical applications



















**CZT detectors** are becoming **more common** and **less expensive to manufacture**. However, still significantly more expensive than conventional SPECT/CT systems.

**Established clinical applications**, including *cardiac, liver, bone, theranostics, and brain*, now **justify the** additional cost. These specialized applications are taking full-advantage of full-ring CZT system capabilities (i.e., Rapid Scan Time, Quantitation, and 3D Dynamic). Exciting new possibilities for the future!

**Conventional SPECT-Only systems** will likely persist in the future. **Lower cost** and **sufficient for certain applications** (*e.g. gastric emptying, thyroid, and renal studies*)



















alternative in routine practice for <sup>99m</sup>Tc.

However, these are not suited for **long-lived nuclides**. Need for a robust alternative.

Need to assess **impact of parameters** on **absolute quantitation** and **establish guidelines**.





HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL** 

- **Absolute Quantitation Cross-Calibration** is easier than with **conventional SPECT** (*fewer technical* factors). Uniform Flood Phantom leads to the best performance. Jaszczak Phantom provides a good





### 83





2023 CCSNMMI FALL EDUCATION PROGRAM OCTOBER 21-22, 2023 NOBLESVILLE, IN



# THANK YOU FOR YOUR ATTENTION

### Acknowledgments



Marie **Foley Kijewski** Matthew **Robertson** Sharmila **Dorbala** Heather **Jacene** Marcelo F **Di Carli** 

Christopher **Breault** 

BRIGHAM HEALTH



BRIGHAM AND WOMEN'S HOSPITAL



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL





